day: dule I Adams h exposure Juition			
(1) Shutter speed A slow $30 = 1/30 sec$ 60 -120 240 -480	4 ways to control pixel values 2 3 Aperture ISO big 4 5.6 800 -8 400 -11 200 16 100 low sensitivity f / 16	Deliberate over/under exposure Overexposed = More light, or more sensitive ISO EV = +1 Proper exposure = middle value on an average pixel Underexposed = Less light, less sensitive EV = -1	

Shutter speed: motion blur at slow speeds Aperture: low depth of field at large aperture ISO: Noise at high ISO Deliberate under/over: Camera will change one or more of the other three settings, with attendant side effects.

Any measurement requires 3 types of resolution: spatial, temporal, measurand (dynamic range) Making an image is equivalent to making a measurement of light (measurand)

	$\frac{1.0}{1.0}$ 1 $ 2$ $ 4$ $-$
Resolution: Spatial	≥ \\\// \\\ =
Can two adjacent things be resolved?	
	<u>1.4</u> <u>1.6</u>
Resolution = minimum distance between two	<u>1.8</u>
objects for them to be recognized as separate.	2.0
Applies to objects (spatial resolution)	5-line resolution test wedges: 1:2 ratio each Video Test Pattern John Beale 1999
and events (temporal or time resolution) and any quantity being measured (measurand)	"Large resolution" = meaningless "Fine resolution" or "Highly resol
Spatial resolution can be DEGRADED by • Bad focus	= well - resolved.
Rastering, pixelation	
Diffraction effects	
Low contrast	
 Compression artifact (in jpegs) 	
Motion blur	

	Bad focus: is circle of confusion > pixel?	
	sensor	
	$\wedge + -$	
\sim	pixel	
	• Diffraction effects if lens aperture or pixel size < λ wavelength of light	
λ < d	$\lambda > d$	
tweeters,	woofers, relatively	
Beamy effect, s	sharp focus small aperture	
	1/2	
	le : http://www.luminous-landscape.com/tutorials/understanding-series/u-	
	tion.shtml. Moral of the story: high f number has better depth of field, but sharpness	
can be	defeated by diffraction effects.	
Current	it sensor sizes range 35 - 3 mm. For 3k px wide, 1 pixel = 10 -1 μm.	
	= 0.7 μm. Pretty close!	
'E!	II Frame' DSLR: sensor size is ~35 mm	
	p://www.whatdigitalcamera.com/roundup/camera-	
	ndups/best-full-frame-dslrs-2016-9263.	
1001		
How much re	esolution is needed?	
Consider rang	ge of scales:	
Consider rang		
Consider rang 3000 px wi	ge of scales:	
Consider rang 3000 px win What is a dee O(x)	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude	
Consider rang 3000 px win What is a der O(x) Largest scale	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px.	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest reso	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. iolvable scale = feature that takes	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest reso up 3 px or so	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. iolvable scale = feature that takes o.	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest reso up 3 px or so 3→30 One c	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. iolvable scale = feature that takes o. decade	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest reso up 3 px or so $3 \rightarrow 30$ One c $30 \rightarrow 300$ 2n	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. iolvable scale = feature that takes o. decade ind decade	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest reso up 3 px or so $3 \rightarrow 30$ One c $30 \rightarrow 300$ 2n $300 \rightarrow 3000$ 3	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. iolvable scale = feature that takes o. decade ind decade	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest reso up 3 px or so $3 \rightarrow 30$ One c $30 \rightarrow 300$ 2n $300 \rightarrow 3000$ 3	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. iolvable scale = feature that takes o. decade ind decade Brd decade. esolve features that range across 3	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest reso up 3 px or so $3 \rightarrow 30$ One c $30 \rightarrow 300$ 2n $300 \rightarrow 3000$ 3 We can reso	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. iolvable scale = feature that takes o. decade ind decade Brd decade. esolve features that range across 3	
Consider rang 3000 px win What is a dev O(x) Largest scale Smallest reso up 3 px or so $3 \rightarrow 30 \text{ One c}$ $30 \rightarrow 300 \text{ 2n}$ $300 \rightarrow 300 \text{ 3n}$ We can red decades o	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. iolvable scale = feature that takes o. decade and decade 3rd decade. esolve features that range across 3 of scales.	
Consider rang 3000 px win What is a dev O(x) Largest scale Smallest resc up 3 px or so $3 \rightarrow 30 \text{ One c}$ $30 \rightarrow 300 \text{ 2n}$ $300 \rightarrow 3000 \text{ 3}$ We can red decades o In flow, sca	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. iolvable scale = feature that takes o. decade = feature that takes o. decade = features that range across 3 of scales. ales can be 3 minimum,	
Consider rang 3000 px win What is a dev O(x) Largest scale Smallest resc up 3 px or so $3 \rightarrow 30 \text{ One c}$ $30 \rightarrow 300 \text{ 2n}$ $300 \rightarrow 300 \text{ 3}$ We can re- decades o In flow, sca For turbus	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. iolvable scale = feature that takes o. decade and decade 3rd decade. esolve features that range across 3 of scales.	
Consider rang 3000 px win What is a dev O(x) Largest scale Smallest resc up 3 px or so $3 \rightarrow 30 \text{ One c}$ $30 \rightarrow 300 \text{ 2n}$ $300 \rightarrow 3000 \text{ 3}$ We can red decades o In flow, sca For turb Same scale co	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. iolvable scale = feature that takes o. decade nd decade and decade. esolve features that range across 3 of scales. ales can be 3 minimum, pulence need 4 or 5 decades minimum	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest resc up 3 px or so 3→30 One c 30 → 300 2n 300→3000 3 We can re decades o In flow, sca For turb Same scale co If resolution	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. iolvable scale = feature that takes o. decade nd decade 3rd decade. esolve features that range across 3 of scales. ales can be 3 minimum, pulence need 4 or 5 decades minimum onsiderations as for CFD:	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest resc up 3 px or so 3→30 One c 30 → 300 2n 300→3000 3 We can re decades o In flow, sca For turb Same scale co If resolution Is it impo	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. olvable scale = feature that takes o. decade nd decade 3rd decade. esolve features that range across 3 of scales. ales can be 3 minimum, pulence need 4 or 5 decades minimum onsiderations as for CFD: no is increased, is new information seen? oortant information? could have different physics; even large scale results could be wrong	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest resc up 3 px or so 3→30 One c 30 → 300 2n 300→3000 3 We can re decades o In flow, sca For turb Same scale co If resolution Is it impo	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. iolvable scale = feature that takes o. decade nd decade and decade 3rd decade. esolve features that range across 3 of scales. ales can be 3 minimum, oulence need 4 or 5 decades minimum onsiderations as for CFD: on is increased, is new information seen? mortant information?	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest resc up 3 px or so 3→30 One c 30 → 300 2n 300→3000 3 We can re decades o In flow, sca For turb Same scale co If resolution Is it impo	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. olvable scale = feature that takes o. decade nd decade 3rd decade. esolve features that range across 3 of scales. ales can be 3 minimum, pulence need 4 or 5 decades minimum onsiderations as for CFD: no is increased, is new information seen? oortant information? could have different physics; even large scale results could be wrong	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest resc up 3 px or so 3→30 One c 30 → 300 2n 300→3000 3 We can re decades o In flow, sca For turb Same scale co If resolution Is it impo In CFD, c In Flow N	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. olvable scale = feature that takes o. decade nd decade 3rd decade. esolve features that range across 3 of scales. ales can be 3 minimum, pulence need 4 or 5 decades minimum onsiderations as for CFD: no is increased, is new information seen? oortant information? could have different physics; even large scale results could be wrong	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest resc up 3 px or so 3→30 One c 30 → 300 2n 300→3000 3 We can red decades on In flow, sca For turb Same scale co If resolution Is it import In Flow M Minute paper decades of ler	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. iolvable scale = feature that takes o. decade = feature that takes o. decade = feature that range across 3 of scales. ales can be 3 minimum, poulence need 4 or 5 decades minimum onsiderations as for CFD: on is increased, is new information seen? iortant information? could have different physics; even large scale results could be wrong Vis, missing small scales could lead to misinterpretation of physics r: In your GW image, how many ngth scale was in your flow?	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest resc up 3 px or so 3→30 One c 30 → 300 2n 300→3000 3 We can re decades o In flow, sca For turb Same scale co If resolution Is it impo In CFD, c In Flow N Minute paper decades of ler How many dic	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. olvable scale = feature that takes o. decade add decade and decade 3rd decade. esolve features that range across 3 of scales. ales can be 3 minimum, pulence need 4 or 5 decades minimum onsiderations as for CFD: an is increased, is new information seen? orotrath information? could have different physics; even large scale results could be wrong Vis, missing small scales could lead to misinterpretation of physics r: In your GW image, how many ngth scale was in your flow? dout 1/2 theyte them resultes was steputet. A coupte data understand the questor.	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest resc up 3 px or so 3→30 One c 30 → 300 2n 300→3000 3 We can re decades o In flow, sca For turb Same scale co If resolution Is it impo In CFD, c In Flow N Minute paper decades of ler How many dic	ge of scales: ide image, can see 1:1000 = 3 decades of scales ecade? 10x; AKA order of magnitude e = whole frame, takes 3000 px. iolvable scale = feature that takes o. decade = feature that takes o. decade = feature that range across 3 of scales. ales can be 3 minimum, poulence need 4 or 5 decades minimum onsiderations as for CFD: on is increased, is new information seen? iortant information? could have different physics; even large scale results could be wrong Vis, missing small scales could lead to misinterpretation of physics r: In your GW image, how many ngth scale was in your flow?	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest resc up 3 px or so 3→30 One c 30 → 300 2n 300→3000 3 We can re decades o In flow, sca For turb Same scale co If resolution Is it impo In CFD, c In Flow N Minute paper decades of ler How many dic Was your flow	ge of scales: ide image, can see 1:1000 = 3 decades of scales ccade? 10x; AKA order of magnitude = whole frame, takes 3000 px. iolvable scale = feature that takes o. decade decade 3rd decade 3rd decade. esolve features that range across 3 of scales. ales can be 3 minimum, publence need 4 or 5 decades minimum onsiderations as for CFD: on is increased, is new information seen? orotant information? could have different physics; even large scale results could be wrong Vis, missing small scales could lead to misinterpretation of physics r: In your GW image, how many ngth scale was in your flow? d your image capture? w spatially resolved?	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest resc up 3 px or so 3→30 One c 30→300 2n 300→3000 3 We can re decades on In flow, sca For turb Same scale co If resolution Is it impo In CFD, c In Flow N Minute paper decades of ler How many dic Was your flow	ge of scales: ide image, can see 1:1000 = 3 decades of scales ccade? 10x; AKA order of magnitude = whole frame, takes 3000 px. olvable scale = feature that takes o. decade adecade ad decade 3rd decade. esolve features that range across 3 of scales. ales can be 3 minimum, pulence need 4 or 5 decades minimum onsiderations as for CFD: an is increased, is new information seen? ordratn information seen? ordratn information seen? ordratn information seen? could have different physics; even large scale results could be wrong Vis, missing small scales could lead to misinterpretation of physics r: In your GW image, how many ngth scale was in your flow? d your image capture? Medi 12 th bright their resultion was adequate. Accepted their understand the quantion. of W images; resolved vs not	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest resc up 3 px or so 3→30 One c 30→300 2n 300→3000 3 We can re decades on In flow, sca For turb Same scale co If resolution Is it impo In CFD, c In Flow N Minute paper decades of ler How many dic Was your flow	ge of scales: ide image, can see 1:1000 = 3 decades of scales ccade? 10x; AKA order of magnitude = whole frame, takes 3000 px. olvable scale = feature that takes o. decade decade decade and decade and decade. esolve features that range across 3 of scales. ales can be 3 minimum, pulence need 4 or 5 decades minimum onsiderations as for CFD: n is increased, is new information seen? ioortant information? could have different physics; even large scale results could be wrong Vis, missing small scales could lead to misinterpretation of physics r: In your GW image, how many ngth scale was in your flow? d your image capture? Meet 1/2 Beget TBP resulted was adequet. A lange detrumented the questor. of Wimages; resolved vs not t if there aren't two things close	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest resc up 3 px or so 3→30 One c 30 → 300 2n 300→3000 3 We can re decades o In flow, sca For turb Same scale co If resolution Is it impo In CFD, c In Flow N Minute paper decades of ler How many dic Was your flow	ge of scales: ide image, can see 1:1000 = 3 decades of scales ccade? 10x; AKA order of magnitude = whole frame, takes 3000 px. olvable scale = feature that takes o. decade adecade ad decade 3rd decade. esolve features that range across 3 of scales. ales can be 3 minimum, pulence need 4 or 5 decades minimum onsiderations as for CFD: an is increased, is new information seen? ordratn information seen? ordratn information seen? ordratn information seen? could have different physics; even large scale results could be wrong Vis, missing small scales could lead to misinterpretation of physics r: In your GW image, how many ngth scale was in your flow? d your image capture? Medi 12 th bright their resultion was adequate. Accepted their understand the quantion. of W images; resolved vs not	
Consider rang 3000 px win What is a der O(x) Largest scale Smallest resc up 3 px or so 3→30 One c 30→300 2n 300→3000 3 We can re decades on In flow, sca For turb Same scale co If resolution Is it impo In CFD, c In Flow N Minute paper decades of ler How many dic Was your flow	ge of scales: ide image, can see 1:1000 = 3 decades of scales ccade? 10x; AKA order of magnitude = whole frame, takes 3000 px. olvable scale = feature that takes o. decade decade decade and decade and decade. esolve features that range across 3 of scales. ales can be 3 minimum, pulence need 4 or 5 decades minimum onsiderations as for CFD: n is increased, is new information seen? ioortant information? could have different physics; even large scale results could be wrong Vis, missing small scales could lead to misinterpretation of physics r: In your GW image, how many ngth scale was in your flow? d your image capture? Meet 1/2 Beget TBP resulted was adequet. A lange detrumented the questor. of Wimages; resolved vs not t if there aren't two things close	

Time resolution

Other considerations of shutter speed:

Short enough to 'freeze' flow= TIME RESOLVED VS long enough to get desired particle tracks or long enough to be TIME AVERAGED. Calculate motion blur. If unacceptable, increase time resolution= shorter exposure time

Increase shutter speed

Max is 1/10,000? 0.1 msec, 100 µsec? At best. High speed camera 30,000 fps ~ 3 x 10-5 sec = 30 µsec

Freeze the flow with short light source (won't work for light emitting fluids, i.e. flames) Strobe, camera flash ~ 10-5 or -6 sec = 1-10 μsec Pulsed laser 3x10⁻⁹ sec = 3 nsec or less Good resource for high speed photography: http://www.hiviz.com/index.html

If long shutter is needed, might be too much light, even at low ISO. Try a NDF = Neutral Density Filter. Neutral = all wavelengths equally. Gray. NDF 1 = 1 /10 light transmission, 3 stops NDF 2 = 1/100 etc. Log scale. 7 stops <u>http://en.wikipedia.org/wiki/File:Strickland Falls Shadows Lifted.jpg</u> 30 seconds. NDF 8x = 1/100,000,000 = 27 stops

 $10^{8} = 2^{\times}$ $\ll \ln 10^{-} \times \ln 2$ $\chi = \% \frac{\ln 10}{\ln 2}$

= 26.6

Need a tripod for macros, or shutters > 1/30 sec Full size start at \$25. Highly recommended.

Several available for checkout.

Estimate motion blur *in pixels* to guide choice of shutter speed.

Resolution Homework for Monday: Write short answers and submit in Dropbox.

1) In your Get Wet image, are all the scales of interest in the flow wellresolved in the image?

Is there a sharp boundary in the flow that only takes up one or two pixels in the image? What was the major effect that degraded the resolution?

2) At what f/ does your lens produce the sharpest image? Take an object that you can easily focus on (a ruler?), and image it with a range of f/. Then zoom in and check the focus. Try to minimize the effects of motion blur and ISO noise so your testing is valid. Submit at least three images illustrating your results.