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In previous research on fluid mechanics courses, students expressed engagement by relating moments of noticing fluid

phenomena in everyday life. This implies learning transfer and cognitive flexibility about fluids. This study lays the

foundation for connecting perceptual experiences with conceptual understanding, with implications for sensory-rich

learning experiences.Emulating cognitive psychology experiments in visual expertise,we tested twogroupsof participants:

‘‘novices’’ (no formal fluids education, n = 56), and ‘‘experts’’ (passed at least one fluidmechanics course, n = 36).Without

being told the categories, participants were trained to sort static images of fluid flows as laminar or turbulent. Half the

participants in each group trained onflow imageswith a specific format (VonKármán vortex streets), half on amore varied

group of flow images. Participants were then tested on the same type of images as their training (post-test) and tested again

on images from the other training group (alt-test). Training resulted in statistically significant gains for all four participant

groups, comparing post-test to pre-test. An ANOVA of between-group differences revealed that experts did significantly

better than novices (p = 0.0266), whereas a comparison by training-type was not significant (p = 0.2758). A comparison of

alt-test to pre-test data revealed that learning generalized for Novices trained on General Images (p = 0.0266) but not for

Novices trained on Vortex Streets (p = 1.0). Expert results non-significantly trended toward learning generalization.

Despite inconclusive results on expert learning, this study provides a new direction to explore the learning of fluids and

other constraint-based interactions.
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1. Introduction

Whenwe consider the effectiveness of education, we

often ask whether students can transfer knowledge

and skills from the classroom to other settings. This
question is sometimes called the ‘‘transfer problem’’

[1], but it also appears under other names including

‘‘generalization’’ [2], ‘‘awareness’’[3], or the ‘‘need

to activate resources’’ [4]. Instructors who are aware

of the situated nature of learning can intentionally

develop learning environments that provide appro-

priate scaffolding for students [5, 6], making explicit

for students which elements are necessary for the
work and which others are incidental. However,

without this realization, the contextual backdrop

can become a barrier, inhibiting students from

applying their new knowledge or skills in other

contexts, defined by Engeström [7] as encapsula-

tion. As a result, engineering students who have

learned primarily through structured problem sets

may not know how to apply that knowledge once in
the workplace [8], and misconceptions that they

hold as students often persist into their years as

professionals [9].

Fluid mechanics, in particular, is a field in which

students must apply what they have learned in a

wide range of situations, from common mechanical
engineering problems (e.g., pipe flow) to aerospace

ones (aerodynamics of airfoils) to interdisciplinary

applications in areas such as biomedical engineer-

ing, requiring greater cognitive flexibility [10].

Many of the processes in fluids are what Chi calls

constraint-based interactions (CBIs) [11], which are

ontologically different from themore common event

or system processes. Fluid phenomena, such as
diffusion, to use Chi’s example, may appear to

have a beginning and an end, but in fact are

continuous. The surface appearance of a system

belies a more complex, ongoing, and deeper

mechanism, which may be part of why many

students struggle with the concepts, especially

once these ongoing fluid CBIs are part of larger

engineered systems. Chi describes gaining insight
about these CBIs as a shift across ontological
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categories, and this often creates an ‘‘aha!’’

moment, very similar to moments of deep creative

insight, ‘‘whereby everything all of a sudden seems

to make sense’’ [11, p. 230]. If we accept Chi’s

definition of creativity (‘‘the ability to re-represent

a concept that one has to understand from one
perspective to a ‘fundamentally different’ perspec-

tive’’ [11, p. 230] ), then learning fluid mechanics

often requires a level of creativity some disciplines

do not.

One learning theory that grapples well with both

this complexity and the transfer problem is Cogni-

tive Flexibility Theory (CFT) [10], [12]. Particularly

for ill-structured domains, CFT acknowledges the
need to ‘‘revisit the samematerial, at different times,

in rearranged contexts, for different purposes, and

from different conceptual perspectives’’ [10, p. 65].

As noted above, fluid mechanics is just such a

knowledge domain, requiring multiple real-world

instances of its application for students to be able to

apply it in their future work. CFT posits that

‘‘revisiting [an idea] is not repeating’’ it [12, p. 6].
This has the pleasing property of aligning with

insights into the neurobiology of remembering and

forgetting. Each time a person recalls something,

there is a moment when the weights of the neurons

are changed, when the memory is literally edited

[13], a phenomena that has been noted in long term

studies [14]. These findings set CFT as a biologically

plausible learning theory.
Furthermore, CFT has been posited as a reason

why transformative experiences create enduring

learning [15].Transformative experience is a concept

that stems from Dewey’s seminal theory of experi-

ential learning and is influenced by his work on the

value of aesthetic experiences [16–18]. Simply put,

students’ perception of theworld should change as a

result of new knowledge and abilities. Transforma-
tive experience ties together learning and motiva-

tion, and is usually detected through three

hallmarks; (1) Students naturally relate course con-

cepts to what they see in the larger world (expanded

perception), (2) they put those concepts to work

(motivated use), and (3) they find value or meaning

in that experience (experiential or affective value).

Numerous studies in science education have used
surveys related to transformative experience as

measures of student learning and engagement [18–

21].

Expanded perception, as required by the transfor-

mative experience, may be that moment of ‘‘flexible

reassembly of preexisting knowledge to adaptively

fit the needs of a new situation’’ as described byCFT

[10, p. 59]. In previous research on fluids courses in a
mechanical engineering department [22], we found

instances of expanded perception. Students often

expressed engagement by relating their visual

experiences with fluids: ‘‘I’ll never ignore the sky

again’’ and ‘‘I see examples of flow vis all the time

now.’’ These unsolicited self-reports prompted

further study on the course itself and also the

current study into the relationship between percep-

tion and conceptual understanding in a particular
engineering content area.

Our work is motivated by a desire to quantify the

underlying ability represented by these self-reported

expansions of perception. Our investigation is

informed by studies of perceptual expertise, which

include research in face recognition and experts’

perception and memory of cars and birds [23, 24].

Perceptual expertise is the context-sensitive, train-
able ability to actively notice (or perceive) some-

thing through our senses and includes the ability to

differentiate very similar items into their correct

categories and sub-categories. Our experiment is

modeled on studies in which novices were trained

to recognize and classify similar stimuli, such as

species of wading birds and owls [25–28]. While

work on how people form concepts based on
experience has long been an emphasis in psychology

[29], these more recent studies, from experimental

psychology and cognitive neuroscience, shift the

focus to understanding the neurobiological source

of perception. To date, cognitive psychology work

in visual expertise has focused on concrete stimuli

rather than concepts. Our ultimate goal, in contrast,

would be to connect students’ reports of expanded
perception in fluids to a measurable ability: percep-

tual expertise in fluid physics.

To begin, we aimed to define and measure per-

ceptual expertise for a specific characteristic of

fluids: laminar versus turbulent flow. This expertise

is somewhat different from that of content with

more discrete category boundaries, such as bird

species or car make and model classifications,
which have been used in prior visual expertise

studies. This is because the laminar/turbulent dis-

tinction represents a physical concept that can apply

to nearly every fluid flow. Note that the need to

maintain either turbulent or laminar flow is impor-

tant in many engineering designs, and therefore a

crucial concept. For the purposes of this study,

laminar and turbulent can be treated as distinct
categories because we removed any images that

might be considered transitional or uncertain.

Details that signal an image is of turbulent flow

include irregular features at varying spatial scales.

For laminar flow, the details of note include smooth

layers, no sign of cross currents, and features all

being of similar scale. Both laminar and turbulent

flow may have visually identifiable shapes in
common, including large scale vortices. This can

make classification more complex for participants

to learn.
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Real-world expertise takes months or years to

develop, yet we can still gain preliminary insight on

the mechanisms of learning from training studies,

which ‘‘allow for the manipulation of different

factors that may contribute to the acquisition of

expertise, providing better control over variables
influencing this process’’ and ‘‘also allow for better

manipulations of the factors that lead to more or

less generalization’’ [28]. Generalization, often dis-

cussed as learning transfer, is at the heart of our

objective for this study. Although connecting these

experiments to the classroommay be a long process,

the ultimate goal is to create measures that help us

determine if a course is successful in helping stu-
dents gain perceptual expertise, both relevant and

generalizable, in that field.

1.1 Basis for Methods

As our methods are largely taken from cognitive

psychology, we detail the studies that form the basis

of our methodology. Tanaka, Curran and Shein-
berg [27] was one of the first studies to use the

experimental paradigmwe emulate. Earlier research

[30] established that visual experts are able to go

directly to subordinate level identifications, bypass-

ing the basic levels novices go through. Basic

categories are designated by that level of category

in which objects have the most attributes in

common and the discontinuity between categories
is at its greatest [31]. Categories above this level

become broader and often less useful (superordi-

nate) and below this level (subordinate) categories

become more specific, with more similarities with

other subordinate groups than dissimilarities.

For example, a basic level of a stimulus might be

whale, with the subordinate level being Humpback

Whale or SpermWhale, and a basic level dog would
have subordinate levels such as poodle or beagle.

Both stimuli would share a superordinate category

of animal. In Tanaka et al. (2005)’s study, research-

ers asked ‘‘to what extent does subordinate-level

learning contribute to the transfer of perceptual

expertise to novel exemplars and novel categories?’’

In other words, if experts can identify an object in a

particular image, are they also better at identifying
new images of that object and new categories of

related objects? Tanaka et al. [27] used images of

birds: 10 owl species and 10 wading bird species. In

this case, wading bird and owl are the basic cate-

gories, with individual species making up the sub-

categories. Subjects were trained over six days, with

final testing on the seventh day. Testing was con-

ducted using a sequential matching task, where the
subject is shown two images, one after the other, and

must respond whether the birds shown are the same

or different species. Importantly, some trials used

different images of the same species, so subjects

needed to identify the species in each image rather

than merely matching identical images. One of the

training tasks was a categorization task, where the

subject is showna single image andmust indicate the

correct category for the image.

Tanaka et al. (2005) discovered that, for example,
novice subjects trained at the subordinate level (on

individual owl species) could not only identify new

images of the owl species they were familiar with,

but the subjects were also able to learn new owl

species more quickly. That is, the subjects’ training

did indeed generalize to novel exemplars and to

novel categories. However, when learning at the

basic level (wading birds), subjects did not demon-
strate any generalization, and there was no

improvement on basic level identification response

times. The subjects had to perform the task of

noticing differences and categorizing the species in

order to gain the perceptual expertise. Mere expo-

sure to all the images was not enough.

The results from theTanaka et al. 2005 studywere

replicated by Scott, Tanaka, Sheinberg, and Curran
[26]. This study, also using bird images, included the

important addition of looking at subjects’ brain

responses to stimuli, measured in the form of

event-related potentials (ERPs), differentiating the

brain processes involved with categorizing basic vs.

subordinate stimuli. This revealed that different

brain mechanisms are activated for these two

levels of task, These findings from the 2006 study
were then replicated and extended by Scott and her

colleagues [25]. Scott, Tanaka, and Sheinberg [25],

which used images of cars, not only confirmed that

different brain mechanisms were activated for basic

and subordinate level tasks, but also included a final

assessment after a one-week delay. The data

revealed subjects trained at the subordinate level

had improved performance, even after a one-week
delay, whereas basic level training did not.

2. Methods

Following Tanaka, Curran, and Sheinberg [27], we

created a perceptual expertise experiment. After

initial testing [32], we chose to use static images of

fluid flows that could be sorted as laminar or

turbulent in a single session experiment, testing

two kinds of participants: ‘‘novices’’ with no prior

technical knowledge of fluids, and relative

‘‘experts’’ who had passed at least one college-
level fluids course.

2.1 Participants

Individuals who participated in the study were ages

18–30, with normal or corrected-to-normal vision.

They gave informed consent to participate in the

study, as per the protocol approved by the Institu-
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tional Review Board. Participants were recruited

via fliers, email, and classroomannouncements.The

experiment recruited self-reported novices in fluid

dynamics (n = 57) and relative ‘‘fluids experts’’ (n =

39) by recruiting students who had completed fluids

courses. Most novice participants were recruited
through the psychology department website,

which gives course credit to students for participat-

ing. Most expert participants were recruited

through announcements in upper-division engi-

neering courses, populated by students who have

already passed a fluids course. All participants

trained individually and were given a small cash

payment ($10) for their participation. Full demo-
graphics reported in Appendix A.

2.2 Materials

This experiment was programmed in MATLAB

(version R2013b, The MathWorks, Inc., Natick,

MA) using a locally-developed experimental

framework (code available at https://github.com/

warmlogic/expertTrain) and presented with Psych-
toolbox, an open source set of functions for vision

and neuroscience research [33, 34]. Using this

toolkit, the experiment was presented on a compu-

ter, limiting what keys or other controls the partici-

pant could use. Participants viewed the experiment

on 17-inch flat-panel displays with a resolution of

1024 � 768 (60 Hz frame rate) approximately 45

centimeters in front of the participants, and used a

standard QWERTY keyboard.

2.3 Image Selection and Processing

For this experiment, the categories of images were

turbulent and laminar fluid flows collected from

online sources. To verify that images were classified

correctly as either turbulent or laminar, we asked

two mechanical engineering professors who regu-

larly teach fluids to classify the images indepen-

dently. If an image was in doubt or labeled
‘‘transitional’’ by either professor, the image was

not included in the study. One specific type of image

used was of Von Kármán vortex streets, which are

seen when a fluid flows past an obstacle, and the

wake becomes a series of vortices. Vortex streets can

be either turbulent or laminar (see images a. and b.

in Fig. 1). Twenty images of each category were

included as stimuli for the experiment for a total of
40 vortex street images. Another group of images

(called ‘‘general’’) contained a wide variety of flows,

both liquids and gases, none of which were vortex

streets. These were also categorized as either lami-
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nar or turbulent, and likewise, 20 images from each

category were included. Thus, our four groups of

images were:

1. Laminar instances of Von Kármán vortex
streets.

2. Turbulent instances of Von Kármán vortex

streets.

3. Laminar instances of general flows (all non-

vortex streets).

4. Turbulent instances of general flows (all non-

vortex streets).

See Fig. 1 for examples from each group of images.

Several steps were taken to remove extraneous

visual information from the images. All imageswere

processed to be gray-scale, no larger than 450� 450

pixels, and no less than 230 � 230 pixels. All vortex

street images were orientedwith the flowgoing from

left to right. All portions of the display not covered
in images or text during the experiment were pre-

sented as gray pixels.

2.4 Experiment Design

Participants received instructions that coveredwhat

to expect from the format of the experiment, but no

information regarding the nature of the images or

what the categories would be. The experiment was

conducted in a single session, with a typical partici-

pant taking 15 minutes. Within the text of the
experiment, the categories were called 1 and 2 to

reduce bias due to participants’ prior familiarity

with the words ‘‘turbulent’’ and ‘‘laminar.’’ During

training, participants learned which images went

into each category by trial and error.

Additionally, the categories were randomly

assigned to the two response keys for each partici-

pant, to reduce bias from hand-dominance. Speci-
fically, keys ‘F’ and ‘J’ on a QWERTY keyboard

were used as response keys. Because most partici-

pants used their left index fingers to press ‘F’ and

right index fingers to press ‘J’, randomly assigning

which response went with which key by participant

reduced bias possibly introduced by hand-domi-

nance.

Two different types of task were used:

� Matching task: used as the Testing task. Partici-

pants were shown two images, sequentially, and

required to indicate whether the two images were

in the same or different categories. A fixation

point (a black ‘+’) appeared in the center of the

screen before each trial. Participants were shown
each image for 800 ms with an interstimulus

interval ranging from 500–700 ms. Participants

were given 2000 ms to respond, while the phrase

‘‘Same or Different’’ is on screen. The sequential

matching taskwas used for all three testing phases

(pre-test, post-test, alt-test, more fully described

below), and participants received no feedback.

See Table 1.

� Categorization task: used as the Training task.

Participants were shown a single image, and

required to indicate if the image fit category one
or two. A fixation point (a black ‘+’) appeared in

the center of the screen before each trial. Partici-

pants viewed each image for 1000 ms, were given

2000 ms to respond while the phrase ‘‘1 or 2’’ on

screen, and were then shown feedback on their

choice for 1000 ms. There was a 500 ms pause

between trials. For our experiment, the categor-

ization taskwas used for the single training phase,
and participants received feedback for their

actions. When correct, participants saw a green-

colored ‘‘Correct!’’ and heard a high-pitched

beep, and when incorrect, they saw a red-colored

‘‘Incorrect’’ and heard a low-pitched beep.

� A note on image presentation duration: related

perceptual expertise studies also use very brief

presentation times, such as 2000 ms [35], 1000 ms
[36] or even 500 ms [26] with pauses between

images ranging from 200 to 1500 ms in those

same studies. Initially, we were concerned that

the flow images would require longer image

presentation times; however, the data from our

pilot study of novice participants [32] revealed

that these brief image presentation times were

sufficient. Although engineers rarely evaluate
situations this quickly, keeping presentation

duration in line with past perceptual expertise

studies facilitated comparison with that prior

work.

When participants arrived at the experiment loca-
tion, they were assigned a number, so that they

could be evenly divided for the two training condi-

tions. Even-numbered participants were given the

pre-test, training, and post-test on Von Kármán

vortex streets. Odd-numbered participants were

given general images for the pre-test, training, and

post-test.

At the start of the session, participants completed
brief practice tasks in matching and categorization

to learn the controls for the experiment. Practice

images were of everyday objects, and participants

were asked to categorize them as solids or liquids.

The practice taskswere identical for all participants.

After the practice task, the participant had the

opportunity to ask questions of the experiment

facilitator before continuing onto the actual experi-
ment.

The first test phase, the pre-test, asked partici-

pants whether two sequentially presented images

matched (a matching task). They were given no
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guidance as to what criteria to use in attempting this

task.

The next phase, the training phase, presented the

participants with a categorization task with feed-

back on each trial. This trained them to sort the flow

images as type 1 or 2. This task was deliberately
trial-and-error; imageswere labeled as type 1or type

2 during feedback to avoid drawing on participants’

prior knowledge of laminar and turbulent flows.

The second test phase, the post-test, asked parti-

cipants to complete a matching task akin to the pre-

test. Note that images used in the pre-test, training,

and post-test were selected at random from the same

set, such that participants were not presented with
the same images in each phase.

The final test phase, the alt-test, asked partici-

pants to complete amatching taskusing an alternate

set of images. That is, participants trained and

tested on Von Kármán vortex streets up to this

point were now shown the general flow images,

and those trained and tested on the general images

were shown the Von Kármán vortex streets. See
Table 1 for experiment phaseswith numbers of trials

for each.

At the end of the experiment, participants were

asked to write responses for two concept questions,

which were set aside for future evaluation:

1. Thinking about your experience in the experi-

ment, how would you describe the two cate-

gories of images?

2. How did you decide which images to place in

which category?

Lastly, the participants completed a brief demo-

graphic survey. The demographic surveywas placed

at the end to avoid creating stereotype threat during

the experiment [37].
During the experiment, half of the images from

each category were selected randomly for the train-

ing task, while all images were used for the testing

tasks. By reserving some of the images, we could

determine whether training generalized to the

untrained images, decreasing the likelihood that

participants were showing improvement solely

through memorization of individual images. Note
that for the alt-test, all participants were seeing

entirely new images.

Both fluids novices and fluids experts were split

into these two training groups, such that we had

four groups to examine.

2.5 Statistical Procedure

To determine whether participants were able to

learn the categories in the brief training task, and

then to see if participants were able to transfer that

learning to the alternate set of images, we recorded
their accuracy during training and each testing

phase. Matching task results for each testing phase

(pre, post, alt) were tallied. Responses were classi-

fied as ‘‘hits’’ (answering ‘‘same’’ when images are

from the same category), ‘‘misses’’ (answering ‘‘dif-

ferent’’ when images are from the same category),

‘‘correct rejections’’ (answering ‘‘different’’ when

images are from different categories), and ‘‘false
alarms’’ (answering ‘‘same’’ when images are from

different categories). We then focused on hit rate

and false alarms. These two totals indicated a

participant’s response accuracy, because the

number of trials was consistent. For example, the

post-test had 40 trials, 20where ‘‘same’’ was correct,

and 20 where ‘‘different’’ was correct. A participant

with 14 ‘‘hits’’ would typically have 6 ‘‘misses’’, and
if the same participant had 8 ‘‘correct rejections,’’

there would be 12 ‘‘false alarms.’’

Originating in electrical engineering, signal detec-

tion theory is also heavily used in psychology in

situations where decisions aremadewith a degree of

uncertainty. One measure commonly used in detec-

tion theory is a sensitivity index (d0), in order to

separate discrimination fromresponse bias [38]. The
sensitivity index (d0) was calculated for each test

phase of each subject. This is estimated from the hit

and false alarm rates as follows:

d0 = z(hit rate) – z(false alarm rate)

where z(x), 0� x�1, is the inverse of the cumulative
distribution function of the normal distribution.

Because d0 accounts for both the hit rate and the

false alarm rate, it allows us tomeasure participants’

ability to differentiate between same and different

trials (where ‘‘same’’ was the correct answer and

those where ‘‘different’’ was correct), while taking
into account response bias for participants who

tended to press one key more than the other regard-

less of the stimuli. Note that d0 = 0 indicates
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Phase
(task)

Pre-test (Phase 1)
(Matching)

Training
(Categorization)

Post-test (Phase 2)
(Matching)

Alt-Test (Phase 3)
(Matching)

V. Street-trained
(45 participants)

Vortex Streets
(40 trials)

Vortex Streets
(20)

Vortex Streets
(40)

General Flows
(40)

General-trained
(47 participants)

General Flows
(40 trials)

General Flows
(20)

General Flows
(40)

Vortex Streets
(40)



responses were roughly the same as chance (50%

accuracy).

Pre-test sensitivity indices for the four groups

were evaluated to verify that the groups were

statistically similar prior to training. We performed

a one-sided t-test for mean d0 change greater than
zero for each group for both post-test (post-test d0 –
pre-test d0) and alt-test (alt-test d0 – pre-test d0), to
assess whether training was effective when images

were consistent (post-test) and whether the training

generalized (alt-test). All assumptions were con-

firmed, e.g., we confirmed the normality assumption

with the Shapiro-Wilk test.

A two-way ANOVA was performed, using the
two training image groups (vortex streets / general

images) and two expertise levels (expert / novice).

This was performed for the difference in d0 between
the pre- and post-tests (post-test d0 - pre-test d0). All
analysis was done using R (Version 3.2.3 (2015–12–

10)). All ANOVA assumptions were checked and

satisfied. A 5% significance level was used for all

conclusions.
The concept question responses and demo-

graphic data were logged for future study.

2.6 Data Preparation

Data from three participants (one novice, two

experts) became corrupted and were removed
from the analysis. Thus, data from a total of 56

novice participants and 37 expert participants were

analyzed. We looked for outliers whose perfor-

mance on any one test phase was more than three

standard deviations away from the mean score, and

removed one expert participant from the data as a

consequence. That participant’s data revealed a

very high false alarm (false positive) rate. In fact,
the participant responded with the same key for 39

of the 40 trials in the alternate testing phase. The

analysis was conducted for the remaining partici-

pants:

1. Novices trained on vortex streets (n = 28)

sometimes referred to as Novices (vortex)

2. Novices trained on general flows (n = 28)

sometimes referred to as Novices (general)

3. Experts trained on vortex streets (n = 17)

sometimes referred to as Experts (vortex)

4. Experts trained on general flows (n = 19)

sometimes referred to as Experts (general).

We then calculated sensitivity gain for each subject.

Sensitivity gains were calculated as: (d0 on post-test
– d0 on pre-test).

3. Results

The mean (standard deviation) value of the sensi-

tivity index (d0) at each of the three phases of the

study is provided inTable 2. Fig. 2 presents the same

three mean values per group, plotted with bolded

diamonds and connected with solid lines to indicate

trends. In addition, Fig. 2 shows the individual
sensitivity index values for each participant; these

values are connectedwith dashed lines. BothTable 2

and Fig. 2 show a general pattern of improvement

from pre- to post-test and a retrogression of these

improvements between the post- and alt-test. These

summary observations will be discussed in more

formal statistical detail next.

Pre-test sensitivity indices (d0) were evaluated for
each of the four groups in order to verify that the

groups were statistically comparable at the outset.

Table 2 reveals how all but the group of novices

trained on general images averaged a d0 between
0.45 and 0.49. The Novice (general) group’s mean

pre-test sensitivity was lower, at 0.25. The ANOVA

for any between group differences in mean pre-test

sensitivity yielded p = 0.25 (F(3,88) = 1.40). There-
fore, there was not statistical evidence of any differ-

ences in the means of the four study groups in the

pre-test. This confirmed there were no systematic

group differences in d0 prior to training; thus change
score analysis using ANOVA was appropriate for

comparisons of post to pre d0 values.
We proceeded with comparisons of the three test

phases: pre-test, post-test, and alt-test. Table 3
summarizes the change in d0 from the pre- to post-

test by group; that is, Table 3 details the per-group

training effect. To be clear, the change in d0 here is
found by subtracting the pre-test d0 from the post-

test d0. Each group showed a statistically significant
positive change when we performed a one-sided t-

test. Because the pre-test data was tested twice, the

p-values have been adjusted for multiple compar-
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Table 2.Mean and standard deviation of d0 for each group in each test phase

Group

Pre-test (Phase 1)
Mean (standard
deviation)

Post-test (Phase 2) Mean
(standard deviation)

Alt-test (Phase 3) Mean
(standard deviation)

Experts trained on Vortex Streets 0.49 (0.62) 1.47 (0.79) 0.88 (0.72)

Novices trained on Vortex Streets 0.46 (0.41) 1.07 (0.70) 0.33 (0.48)

Experts trained on General Images 0.45 (0.38) 1.24 (0.84) 0.71 (0.57)

Novices trained on General Images 0.25 (0.42) 0.72 (0.56) 0.68 (0.62)



isons.More, only one group (Novices (general)) did
not have at least 75% of its participants with

improved d0 values. To illustrate this further, a

side-by-side boxplot for the change in d0 values
was created (Fig. 3) with a horizontal dashed line

at 0 to denote no change. Most individual partici-

pants showed improvement (positive delta), sug-

gesting a positive effect from the training phase.

For pre-to post-test comparisons, the summary
statistics (Table 3) and boxplots (Fig. 3) display

evidence that the experts improved more relative to

novices on both training image types. This, then, is a

key finding in this study: the difference between

experts and novices, when training image type was

taken into account in the two-way ANOVA,

resulted in a statistically significant difference of

–0.3485 for novices versus experts (p = 0.0266,
95% CI [-0.6557, -0.0413]). In comparison, there

was no statistically significant difference when
examining those trained on vortex streets versus

those trained on general images, (p = 0.2758, mean

of 0.1655, 95% CI [-0.1344, 0.4654]). An interaction

effect between expertise and training image typewas

not significant (p = 0.8939) and therefore not

included in the final model. Thus experts learned

to categorize laminar and turbulent flows more

accurately than novices.
The last part of the statistical analysis was to

compare the change in sensitivity index from the alt-

to pre-test. A central question of the present study

was whether participants would generalize their

learning from the images they were trained on to a

new set; that is, would participants trained on the

general images be able to match laminar and turbu-

lent for vortex street images and would participants
trained on vortex streets be able to match laminar

Visual Expertise in Fluid Flows: Uncovering a Link Between Conceptual and Perceptual Expertise 1089

Fig. 2. Sensitivity indices (d0) for each group by test phase. Bolded line indicates the mean. Individual
participant values are in dotted lines. Phase 1 – pre-testwhenparticipantswere completely guessing, Phase 2 –
post-test occurred after a training phase, Phase 3 – alt-test, when an alternate set of images were used.

Table 3.Themean (and standard deviation) andmedian of the change in participants’ sensitivity indices frompost-test – pre-test. p-values
here indicate that the change was non-zero, showing that training was effective for all four groups

Group
Mean (Standard
Deviation) Median

p-value adjusted for
multiple comparisons

Experts trained on Vortex Streets 0.98 (0.84) 0.93 p = 0.0002

Novices trained on Vortex Streets 0.61 (0.55) 0.61 p < 0.0001

Experts trained on General Images 0.79 (0.91) 0.87 p = 0.0014

Novices trained on General Images 0.46 (0.67) 0.39 p = 0.0011



and turbulent when comparing general images.

Furthermore, would these alt- to pre-test compar-

isons vary by expertise level (expert/novice)?

Table 4 summarizes the change in d0 from the pre-

to alt-test by group where the change is found by
subtracting the pretest d0 from the alt-test d0. We

performed a one-sided t-test for mean d0 change
greater than zero for each group for alt-test d0 – pre-
test d0. Because pre-test data was tested twice, the p-
values reported in Table 4 have been adjusted to

account for multiple comparisons. A side-by-side

boxplot for the median change in d0 values was

created (Fig. 4) with a horizontal dashed line
added to reflect when the change equaled 0. Notice

that the Novices (general) show statistically signifi-

cant improvement, whereas the results for novices

trained on vortex streets are as if they had received

no training; p = 1.0. This is an indicator that

generalization to alt images was most difficult for

novices who trained on vortex street images and

were transferred to general images. This aligns with
results from prior perceptual expertise studies.

The results for the expert participants are less

clear. See Table 4. They show a general improve-

ment over the pre-test. Yet, the necessity of dou-

bling p values (because the pre-test data is used

twice) results in p > 0.05 for both Experts (vortex

streets) (p = 0.0755) and Experts (general) (p =

0.1168). In addition, although the median of

Experts (vortex streets) improvement is near zero,
the mean is 0.39, suggesting that those who did

improve made large gains, as seen in Fig. 2.

4. Discussion

Our study began with anecdotes from students

about the moments when they became aware of

fluid physics in everyday life.We are motivated by a

need to understand the connection between percep-

tual expertise of fluid flows and students’ conceptual

understanding. Unlike previous perceptual exper-

tise studies, which focused on images of birds or
cars, our study asks participants to sort fluid flow

images by somewhat more abstract characteristics:

laminar and turbulent. Our first question was

whether participants, particularly novices, would

be able to learn to sort these stimuli in a similar

fashion as participants in past studies. (The null

hypothesis for this question is that training would

have no effect, and we would see no real difference

Katherine Goodman et al.1090

Fig. 3. Changes in sensitivity index (d0) by participant group, comparing the post-test to the pre-test.
Bold lines indicate the median, boxes cover the 25th to 75th percentile, and whiskers denote the
maximum and minimum values. Positive values indicate increased sensitivity to detecting change,
interpreted as improvement after training.

Table 4. The mean effect (with 95% confidence intervals) of the change in participants’ sensitivity indices from alt-test – pretest

Group Mean (95% CI) p-value (adjusted for multiple comparisons)

Experts trained on Vortex Streets 0.39 (–0.0453, 0.8327) 0.0755

Novices trained on Vortex Streets –0.13 (–0.3399, 0.0890) 1.0000

Experts trained on General Images 0.26 (–0.0727, 0.6014) 0.1168

Novices trained on General Images 0.43 (0.1638, 0.6971) 0.0026



between the pre- and post-tests.) We found that

initial performance (pre-test) did not vary across
groups, so expertise did not influence participants’

initial categorization abilities. However, expertise

did benefit participants’ ability to learn, as demon-

strated by their greater gain between post-test and

pre-test. If prior knowledge of fluids made no

difference, we would have expected a significant

difference between all of those trained on vortex

streets when compared to all of those trained on the
general images, and no difference when comparing

novices to experts.

A second question was whether our study mir-

rored findings in prior studies [39], which demon-

strated that training on specific instances (in our

case, vortex streets) results in greater learning

(improved sensitivity) for those same stimuli, yet

that training does not generalize well. (The null
hypothesis for this question is that image type

would have no difference that participants trained

on vortex streets would have similar results to those

trained on the general images.) That earlier work

found that novices training with a more variable

group of exemplars (like our general flows) resulted

in less improvement in the post-test, but that sensi-

tivity is more likely to persist when presented with
the new set of exemplars [28, 40, 41]. Our results for

novices mirror this finding remarkably well.

Novices trained on general images show statistically
significant improved sensitivity when tested on

vortex streets, but novices trained on vortex streets

did not show any change in sensitivity to general

images. See Table 4.

Since novices appear to learn fluid flow stimuli in

a similar fashion as novices learning car or bird

images, the expert participant results become even

more interesting. Our third question was whether
experts and novices would perform the same in the

study. (The null hypothesis for this question is that

there would be no difference between the groups.)

The expert participants did not exhibit the same

pattern of learning (sensitivity gain) from general to

specific categories of images, or vice versa, as

novices. On the contrary, there was a positive

effect from having expertise in fluids that was not
dependent on training image type. The trend in the

data suggests that the general or specific nature of

the training stimuli seems to matter for the novices,

but not for the experts. The experts’ results are

admittedly not statistically significant, however

the contrast between novices and experts implies

that expert participants are displaying a type of

knowledge transfer.
Somemay argue that this result is not noteworthy
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Fig. 4.Change in sensitivity index (d0) by participant group, comparing the alt-test to the pre-test.Median values are
indicated with bold lines; with boxes span 25th to 75th percentile and whisker denote the maximum and minimum
values. Positive values indicate increased sensitivity to detecting change, interpreted as learning generalizing to the
new image type.



when taken in full context. After all, participants

were alerted to the involvement of fluids content

because recruiting efforts mentioned the need for

participants with andwithout that experience. Like-

wise, participants were asked whether they had

fluids knowledge as they signed in for the experi-
ment. Future studies may want to alter recruitment

methods in order to avoid mentioning the content

area of the stimuli prior to testing. One approach

might be to recruit solely from engineering courses

that have Fluid Mechanics as a prerequisite, which

would eliminate the need to explicitly mention

fluids. A questionnaire after testing could confirm

this precondition, so that the question would not
prime the participants for a fluids-oriented task

beforehand.

Even noting this concern of priming participants

to expect something fluids-related, this task is

probably unlike those they have performed in

other contexts. The work required for fluid

mechanics courses tends to be analytical, focused

on solving equations. The use of images in the
course is typically limited. Some students may

have used drawings to aid their comprehension,

and some professors expose students to images of

fluid flows and discuss these images in class. In fact,

the fluids courses taken by our ‘‘expert’’ students

often included a ‘‘Flow Vis of the Day.’’ Even with

exposure to images, short video, and computer

simulations of fluids, students rarely had to com-
plete tasks involving analysis of images of fluid

flows. The exception would be students who had

participated in a course explicitly about creating

and understanding such images, called Flow Visua-

lization [22]. Unfortunately, we did not ask partici-

pants whether they had participated in this class at

the time of the experiment.

From Tanaka, Curran and Sheinberg [27], we
have evidence in a laboratory setting that exposure

to images is not sufficient for novice participants to

learn to distinguish between stimuli categories at the

subordinate level. They found participants had to

perform the sorting tasks in order to gain the

perceptual expertise. Inour case, expert participants

were applying what they knew prior to the experi-

ment to a new task. This study is not directly
analogous to studies that engaged bird and car

experts. Bird watchers, in particular, commonly

use their expertise in visual tasks. In contrast, the

typical fluid mechanics student is not trained to

perform visual tasks.

What our study does suggest is a crossover

between conceptual and visual perception skillsets.

Conceptual knowledge learned in the classroom
influenced their performance on a subsequent per-

ceptual task. We view the ability to map conceptual

understanding onto visual information as a neces-

sary step toward the expansion of perception that is

part of the transformative experience.

We know that analytical problem-solving does

not imply the ability to handle a problem presented

visually. Work in the Physics Education Research

(PER) community has documented that students
who can correctly use Ohm’s law and Kirchhoff’s

rules to solve complicated quantitative circuit pro-

blems often have difficultywith a simpler qualitative

task ranking light bulbs in a circuit diagram by

brightness [42]. In the PER study, only 15% of the

students showed that they can transfer an analytical

skill to a more qualitative task. Perhaps what is

missing is an underlying conceptual understanding.
If handling ideas visually promotes connections

between analytical skills (solving equations) and

conceptual understanding, then that would be

another reason to implement visual tasks in

STEM courses.

In our preliminary review of the open-ended

questions, 27 of the expert participants identified

their task as sorting by laminar and turbulent; only
two of the novice participants did so [43]. Of the

expert participants who did not identify the task

correctly, one believed the task was sorting real

photos from screen captures of computer generated

simulations, and five believed the task was sorting

by phase (gases vs. liquids). Recognition that stu-

dents may doubt what they have learned when

confronted with new data or situations is worth
further investigation, and may be related to other

ways of framing the transfer problem, such as

‘‘activating resources’’ [4]. We would also like to

identify which features of the training phase acti-

vated their knowledge of laminar and turbulent

flows, such that expert participants knew to apply

something learned in class to this new, visual

matching task. We posit that this process may be
similar to the analogical scaffolding proposed by

Podolefesky and Finkelstein [44], wherein learning

is bidirectional between an analogy used to teach a

concept and the target concept. In our case, learning

may be bidirectional between the visual task and the

analytical tasks from their coursework, such as

solving equations.

The main contribution of this study is that it
begins to create a linkage between conceptual learn-

ing and visual expertise, with the potential to create

an alternate assessment of conceptual understand-

ing separate from analytical problem-solving. This

study establishes a viable method of measuring

visual perceptual expertise in a specific dimension

of an engineering discipline.

4.1 Limitations

Limitations to this study include a small sample size.

We began by running the experiment in the Psychol-
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ogy Department building, but eventually realized

that the specialized engineering population we

needed to recruit simply would not walk the fifteen

minutes to a different building to participate. Parti-

cipation increased once the experiment was moved

to the Engineering Center. Another limitation was
the scope of the experiment itself: we only tested one

visual dimension of fluids – laminar versus turbu-

lent. A challenge with creating more dimensions for

the experiment was locating and processing suitable

images. Increasing both the size of the study and the

range of characteristics tested would greatly

improve further work.

4.2 Future Work

We are excited by the possibilities for the perceptual

expertise study; there are many options for extend-

ing this work. First, we plan to analyze the open-

ended concept questions.Wehave begunqualitative

coding of these concept question responses, for both

expert and novice participants, and other mean-
ingful trends may emerge.

As we adapt the experiment for additional parti-

cipants, we may include other concepts from fluids,

including jets, shear layers, and Rayleigh-Taylor

instabilities, in order to create a more multi-dimen-

sional measure of visual expertise in fluids. This

could potentially become a useful classroom assess-

ment.
We would also like to switch to a web-based

platform so that other institutions could more

easily join the study. We are already looking at

potential platforms. Once the experiment can be

more widely distributed, there are more options for

establishing its relevance. We imagine, for instance,

asking fluids experts from around the world to

participate with a larger group of images, to
create a more definitive range of fluids expertise,

not unlike what past studies have measured in bird

watchers. This work may also inform studies of the

brain, relating back to the other studies of percep-

tual expertise cited earlier. Are the abstract cate-

gories of fluid flows utilizing different brain

mechanisms than more concrete stimuli, like cars

or faces?
Other future work could continue to explore the

connections between visual expertise and concep-

tual understanding in other disciplines, such as

structural analysis, failure analysis, material micro-

scopy, and even medical diagnoses. Such work may

lead directly to conceptual assessment, andwill help

further characterize the connection between percep-

tual expertise and expanded perception as defined in
the transformative experience. As such, this work

represents another collaboration between current

cognitive psychology and discipline-based educa-

tion research. These kinds of collaborations are

gaining attention as more researchers attempt to

bridge the disciplinary divide [45, 46].

This is not a call for merely inserting more

images into fluids courses. We know from prior

studies that exposure to images is not enough for

participants to gain the perceptual expertise needed
to sort those images at the subordinate level [27].

Similarly, mere exposure to flow images without

instruction would likely be ineffective. Fascinating

images may attract some students to study fluids,

but ideally these images would also draw the

students’ curiosity about constraint-based interac-

tion (CBI) causing a particular image. Even limited

use, as is the case in some fluid mechanics courses,
of images, videos, and computer simulations of

fluid movement, collectively known as flow visua-

lization or ‘‘flow vis’’, helps cement understanding.

As one student in a related study commented, ‘‘I

think I kind of would have got it without the

visualization, but I think the visualization really

locked in the concepts and the knowledge’’ [47]. So,

while we encourage the thoughtful use of images
within lessons to reinforce understanding for stu-

dents who otherwise might not understand the

concepts, we believe it is even more important to

devise learning activities where students create,

manipulate, or describe images related to central

concepts. These activities may provide students

with an additional means of relating to the content,

as well as provide instructors with an additional
means to gauge comprehension. The possibility of

utilizing visual perception as a means of boosting

learning in fluid dynamics suggests the benefit of

including other perceptual expertise. As a result, we

are exploring the possibilities of not only visual,

but also auditory and tactile cues that might

enhance learning in engineering courses.

5. Conclusions

Our perceptual expertise experiment with images of

laminar and turbulent flow suggests (1) that

novices learned the concepts used to sort the flow

stimuli in ways similar to participants in prior

studies, which used more concrete stimuli, and (2)
that the participants with prior fluids knowledge

(experts) did significantly better than the novices,

regardless of the images used in training. This

result suggests that these participants were able to

access their conceptual knowledge about fluids to

perform this new, visual task: sorting the images by

whether the images were of laminar or turbulent

flows. This idea, while seemingly simple, opens the
door to new ways of understanding conceptual

learning, and it causes us to question whether this

interaction is two-way. That is, for the novices who

learn this visual perception task, would learning the
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concepts of fluid physics around laminar and

turbulent be easier as a result? Also, could we use

such a task as a type of assessment in a fluids

course, using visual expertise in fluids images as

one benchmark of learning? Experiments like this

one could assist in differentiating students who
both understand the concepts and can work

through the mathematical procedures from those

who can complete the math but do not grasp the

underlying concepts.
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Appendix A

Participant Demographics

Novices (n = 56) Experts (n = 36)

Mean age 20.64 22.29

% Male/female/other 50% / 46% / 4% 64% / 36% / 0%

%White 82.14% 83.33%

% Asian 14.29% 8.33%

% Hispanic/Latino 7.14% 11.11%

% all others / unreported 0.00% 2.78%

% multi-racial* 3.57% 5.56%

* Participants who selected this also selected other identifications, causing totals to be higher than 100%.
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