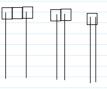
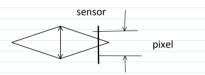
13.Resolution1

Today: Review exposure
Review exposure
Resolution Spatial
Temporal Friday will talk about Measurand, aka Dynamic range, then on to Specific Flow Vis Techniques, starting with Dyes
Clouds First Report Due today
Dear ME Students,
We're hosting a big alumni event on Friday, November 9th and are looking for students interested in participating in a project showcase. This is a good opportunity to connect with alumni and maybe even get some feedback on next steps for your project.
Ideas of projects that would be a good fit include:
A class project that you're excited about or that is unique in some way. A project that you're working on as part of a student group.
A project that you're working on as part of a student group. A self-directed project that you've been working on outside of class.
Projects don't need to include a physical build, but you will need to have something visual and/or tactile to showcase what y ou've been
working on. There will be prizes, with details TBD. The application to participate is due on Friday, October 26th and is available <u>here</u> . https://cuboulder.gualtrics.com/jfe/form/SV_d13KBF13fllh3fL
Review of Exposure Choices
4 ways to control pixel values (2)
(1) (2) (3) Deliherate over/under exposure
slow big more sensitive ISO $EV = +1$ 30 = 1/30 sec 4 1600 high sensitivity $EV = +1$
\sim 60 \sim \sim \sim 800 Proper exposure = middle value
- 120 on an average pixel
240 11 200 480 16 100 low sensitivity Underexposed = Less
Light increasing Pixel value light, less sensitive
EV = -1
$0 + - \frac{1}{2}$
Side effects of each method, beyond the effect on exposure: $\uparrow \uparrow \uparrow \frown \square$
Shutter speed: motion blur at slow speeds
Aperture: low depth of field at large aperture. Diffraction will reduce sharpness at small
apertures
ISO: Noise at high ISO
Deliberate under/over: Camera will change one or more of the other three settings, with
attendant side effects. With underexposures, get loss of detail in shadows. Worse, at high
overexposure, lose detail in highlights.
Resolution
Any measurement requires 3 types of resolution: spatial, temporal, measurand (dynamic range)
Making an image is equivalent to making a measurement of light (measurand)
1.0 1 2 4
Resolution: Spatial
Can two adjacent things be resolved?


objects for them to be recognized as separate. Applies to objects (spatial resolution) and events (temporal or time resolution) and any quantity being measured (measurand)

est wedges: 1:2 ratio "Large resolution" = meaningless "Fine resolution" or "Highly resolved" = well - resolved.

ico Test Pa


Spatial resolution can be DEGRADED by

- Bad focus
- Rastering, pixelation
- Diffraction effects
- Low contrast
- Compression artifact (in jpegs)
- Motion blur

5-6

• Bad focus: is circle of confusion > pixel?

• Rastering, pixelation

• Diffraction effects if lens aperture or pixel size < λ wavelength of light

	11.1.1		\ \	
λ < d		λ >d		
tweeters, Beamy effect, sh	narp focus	woofers, relatively small aperture	\mathcal{D}	fuzz from interference effects
			1/5	

Example : http://www.luminous-landscape.com/tutorials/understanding-series/udiffraction.shtml. Moral of the story: high f number has better depth of field, but sharpness can be defeated by diffraction effects.

Current sensor sizes range 35 - 3 mm. For 3k px wide, 1 pixel = 10 -1 $\mu m.$ Red λ = 0.7 μ m. Pretty close!

'Full Frame' DSLR: sensor size is ~35 mm http://www.whatdigitalcamera.com/roundup/cameraroundups/best-full-frame-dslrs-2016-9263.

How much resolution is needed?
Consider range of scales:
3000 px wide image, can see 1:1000 = 3 decades of scales
What is a decade? 10x; AKA order of magnitude O(x)
Largest scale = whole frame, takes 3000 px.
Smallest resolvable scale = feature that takes up 3 px or so.
3→30 One decade
$30 \rightarrow 300$ 2nd decade
300→3000 3rd decade.
We can resolve features that range across 3 decades of
scales.
In flow, scales can be 3 minimum,
For turbulence need 4 or 5 decades minimum
Same scale considerations as for CFD:
If resolution is increased, is new information seen?
Is it important information?
In CFD, could have different physics; even large scale results could be wrong
In Flow Vis, missing small scales could lead to misinterpretation of physics
Minute paper: In your GW image, how many
decades of length scale was in your flow?
How many did your image capture?
Was your flow spatially resolved?
Human eye resolution, 74 to >500 Mpx, depending on how you count.
http://www.clarkvision.com/articles/eye-resolution.html
Time resolution
Other considerations of shutter speed:
Short enough to 'freeze' flow= TIME RESOLVED
VS long enough to get desired particle tracks
or long enough to be TIME AVERAGED.
Calculate motion blur. How many pixels long? If unacceptable, increase time
resolution= shorter exposure time
Increase shutter speed
Max is 1/10,000? 0.1 msec, 100 µsec? At best.
High speed camera 30,000 fps \sim 3 x 10-5 sec = 30 μ sec
· · · · · · · · · · · · · · · · · · ·
Freeze the flow with short light source (won't work for light emitting fluids, i.e. flames)
Strobe, camera flash ~ 10-5 or -6 sec = 1-10 µsec
Pulsed laser 3x10 ⁻⁹ sec = 3 nsec or less
Good resource for high speed photography: <u>http://www.hiviz.com/index.html</u>
······································
If long shutter is needed, might be too much light, even at low ISO.
Try a
NDF = Neutral Density Filter. Neutral = all wavelengths equally. Gray.
NDF 1 = 1 /10 light transmission, 3 stops
NDF 2 = 1/100 etc. Log scale. 7 stops
http://en.wikipedia.org/wiki/File:Strickland Falls Shadows Lifted.jpg
30 seconds. NDF 8x = 1/100,000,000 = 27 stops

 $10^{8} = \chi$ $n10 - \chi \ln 2$ $= 8 \frac{\ln 10}{\ln 2}$

= 26.6

Need a tripod for macros, or shutters > 1/30 sec Full size start at \$25. Highly recommended.

Several available for checkout.

illustrating your results.

Estimate motion blur *in pixels* to guide choice of shutter speed.

Resolution Homework for Monday: Write short answers and submit in Canvas

In your Get Wet image, are all the scales of interest in the flow well-resolved in the image?

resolved in the image?
Is there a sharp boundary in the flow that only takes up one or two pixels in the image? What was the major effect that degraded the resolution?
2) At what f/ does your lens produce the sharpest image? Take an object that you can easily focus on (a ruler?), and image it with a range of f/. Then zoom in and check the focus. Try to minimize the effects of motion blur and ISO noise so your testing is valid. Submit at least three images