16.DyeTech

Monday, October 29, 2018 3:55 PM

Last Day Lobby Show Weds 12/12 11 to 1. Snacks provided, help needed

SPECIFIC FV techniques

Boundary techniques. Boundary between 'seeded' and unseeded fluid. Choice depends on physics desired I DYES Today. Mostly in water. 2 Aerosols Particles. Mostly in air for boundary effect.

In this class, often visualization technique determines physics examined, but usually physics are determined by system under study, and FV technique applied should not disturb the flow/physics

I Dye Considerations:

1)Want dye to NOT disturb flow 2)Want dye to show up - HIGH VISIBILITY 3) Special techniques

Minute paper results: How to not disturb flows? Call out answers: Material properties; match density Match velocity Dye injection upstream of the physics Minimize volume of dye

Match dye density to medium density Avoid changes in momentum: inject at local velocity and direction

Answers:

- Match fluid properties, including velocity(speed and direction)
 - Density
 - viscosity
 - Polarity; miscibility; (will it mix)
 - pressure
 - Temperature
 - contrast
 - Molecular weight
- No chemical reaction
- Match vorticity as well as velocity
- Inject upstream of test sectionAllow for equalization time
- Use small ports, minimize volume injected,
- Consider location of injection; reveals different physics http://media.efluids.com/galleries/laminar?medium=113

by Henri Werlé, at ONERA = NASA of France Master of colored dye streams

Avoid injection altogether: Coat object with alcohol-dye mixture or water soluble paint, let dry, then tow in tank. Shows vorticity layer, wake, boundary layer

Or coat short strings on a rake. OK for low speed, short run times • Match fluid properties between dye and medium Density Temperature Viscosity Surface tension (match intermolecular forces) Minimize chemical reactions (unless needed) Diffusion coefficient N.J. Mueschke et al., "Measurements of molecular mixing in a high-Schmidt-

N.J. Mueschke et al., "Measurements of molecular mixing in a high-Schmidtnumber Rayleigh-Taylor mixing layer," *Journal of Fluid Mechanics* 632, J. Fluid Mech. (UK) (2009): 17-48.

(a)

number Rayleign-Taylor mixing layer, "Journal of Fluid Mechanics 652, J. Fluid Mech. (UK) (2009): 17-48.

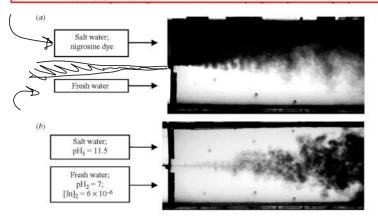


FIGURE 4. Photographs (contrast enhanced for visualization) of the buoyancy-generated mixing layer in a typical water channel experiment. (a) Nigrosine dye was added to the top stream. (b) Phenolphthalein was added to the bottom stream, which changes to its pink form as the two streams molecularly mix (here, "pink" is shown as dark regions within the mixing layer).

Tough to match all these properties- Dye properties are different from ambient fluid. To match density, try a premix:

For food dye in water, premix dye (dense, sinks in water) and isopropyl alcohol (floats) to get neutral buoyancy in water

The concentration gradient between dyed and undyed fluid may cause dye to diffuse too rapidly, misleading when studying mixing. **Turbulence** also causes fast diffusion, making visualization of the overall flow structure difficult. **Try some milk or latex paint to slow diffusion**. Famous example:

Cloud tank was invented by Douglas Trumbull to make realistic clouds in 'Close encounters of the third kind' (1980's sci fi). Used many times since https://www.youtube.com/watch?v=iX_EuN46Ad8_1:26

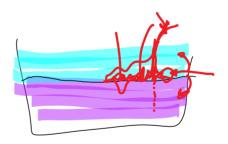
"The effect's process begins with filling a water tank halfway with saltwater which is then layered with a thin plastic sheet. Fresh water is poured over the thin layer of plastic to fill the rest of the tank. This leaves the visual effects artist to remove the thin layer of plastic to reveal what seems to be a single body of water, but is really two layers of different densities: salt water and fresh water. Finally, paint is injected into the tank and it flows through the water, forming an organic cloud figure...

A 2000 gallon glass tank was used that was approximately seven feet tall, seven feet wide and four feet deep which would have to be emptied and refilled after every shot."

 $\label{eq:rescaled} From < \underline{https://donofriofilm.wordpress.com/2013/12/16/cloud-tank-effects/comment-page-1/> references \\ \underline{http://singlemindedmovieblog.blogspot.com/2010/04/old-school-effects-cloud-tank.html \\ \underline{http://singlemindedmovieblog.blogspot.com/2010/04/old-school-effects-cloud-tank.html \\ \underline{http://singlemindedmovieblog.blogspot.com/2013/12/16/cloud-tank.html \\ \underline{http://singlemindedmovieblog.blogspot.com/2013/12/16/cloud-tank-effects/comment-page-1/> references \\ \underline{http://singlemindedmovieblog.blogspot.com/2010/04/old-school-effects-cloud-tank.html \\ \underline{http://singlemindedmovieblogspot.com/2010/04/old-school-effects-cloud-tank.html \\ \underline{http://singlemindedmovieblogspot.com/2010/04/old-school$

DIY version: http://www.youtube.com/watch?v=hxgVKWe5Vm0

Alberto Seveso: http://www.burdu976.com/phs/portfolio/2-colori-disatro-medicina/


2)Want dye to show up - HIGH VISIBILITY

High Visibility: Want good contrast between dyed and ambient fluid.

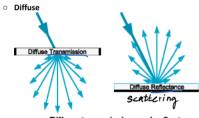
Ambient fluid = transparent = NO interaction with light Dyed fluid = want MAXIMUM interaction with light

Minute paper: list the ways that dye (or any molecule) can interact with light (from external source, later will talk about emitted light)

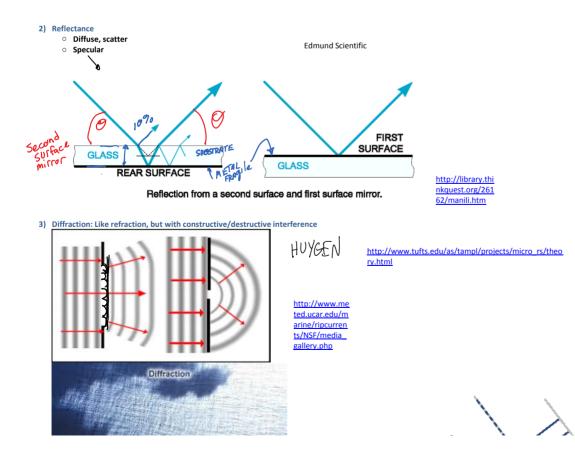
Reflection Absorption To higher energy levels; excitation Diffraction Refraction Diffusion Transmit Radiate it Scatter photoelectric

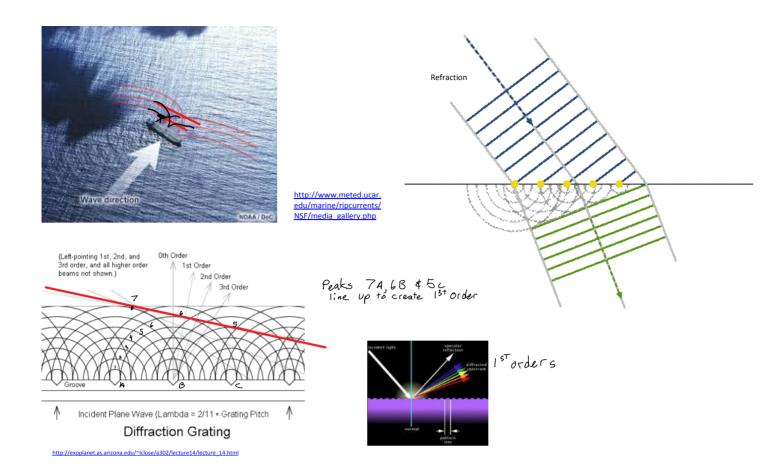
Absorption Reflection Diffusion Refraction Scattering Rayleigh and Mie scattering Photoelectric effect

Refraction	
Absorption	
Diffraction	
Reflection	
Scattering/diffusion	
Transmission	


1) Transmission

• Refraction, at change of refractive index




Emission Fluorescence Excitation

There are many flow vis techniques based on refraction; will cover later.

