## 19.Particles 1

Friday, November 9, 2018

3:55 PM

#### Admin:

Today: Particles: interaction with flow Generation

## **II Particles**

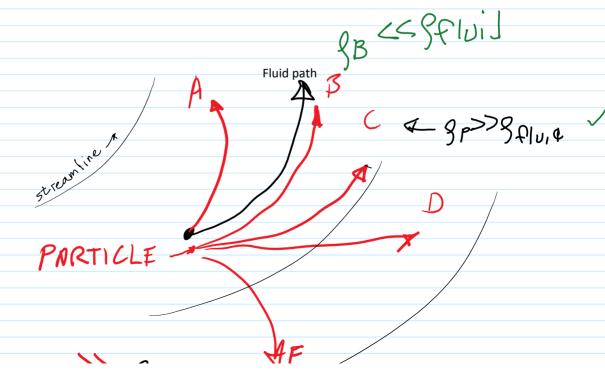
## **Heavy seeding**

Number density high enough to look like a dye

Similar considerations to dyes:

Big difference from dyes

1)Particles must track with the flow


Dyes are molecules, track with the flow just fine.

- 2) Want particles to NOT disturb flow
- 3) Want particles to show up HIGH VISIBILITY

1) When will particles track well, be good tracers?

Minute paper: Consider a curved streamline in a **horizontal plane**. Consider a small particle, much denser than the fluid.

What will the particle path look like compared to the fluid path?



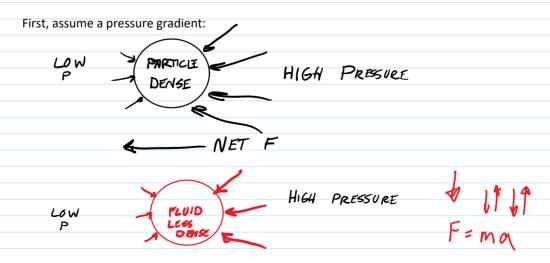


Next, consider same scenario, but a bubble instead of a particle.

SBUBBLE << P FLULD &

Ever been hit in the back of the head by a balloon when you are accelerating in a car? http://www.youtube.com/watch?v=XXpURFYgR2E

For particles (or bubbles) to track with the surrounding fluid, they must accelerate the same as the neighboring fluid


#### Forces on particle:

Body: gravity, neglect.

Surface: normal = pressure

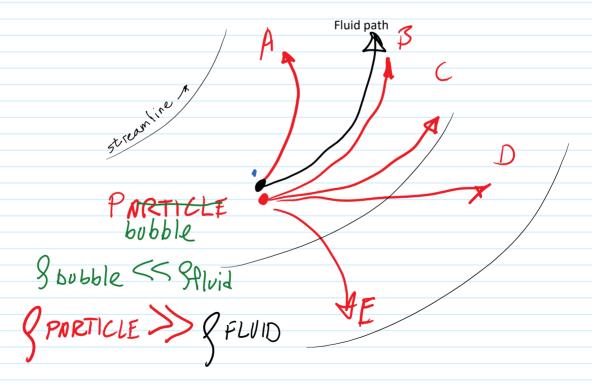
parallel = shear

from fluid






Which particle will accelerate more? Newton's Second Law:  $\sum F = ma$ 


# Same force - Dense - which will accelerate more?

What makes streamlines curve?

(what is a streamline?)



Streamlines curve because of pressure gradient. Low P is inside curve



For particles to accurately track the fluid we have

#### Rules of thumb:

• In water or other liquids, particles of 100 μm diameter or less, any density, will

track most flows.

• In air, particles of 1 µm diameter or less, any density, will track most flows.

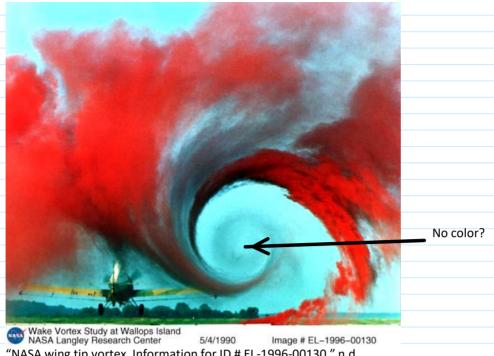
Similar considerations to dyes:

- 1) Particles must track with the flow
- 2) Want particles to NOT disturb flow
- 3) Want particles to show up HIGH VISIBILITY

#### 2)Want particles to NOT disturb flow

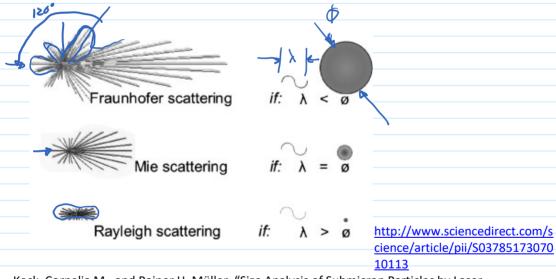
- As with dyes, minimize injection differential velocity; inject at local flow speed.
- Want particles to not introduce new forces or effects. Avoid:
  - soluble particles
  - surface tension
  - o chemical reactions
  - significant change of density
  - particle-particle interaction
    - Number density of particles = # of particles / unit volume. (Contrast to mass/volume of solid alone). Keep low enough to avoid interactions.
    - Particle-particle interaction (collisions, drag) lead to non-Newtonian effects. Slurries, oobleck, blood, shampoo, silly putty, other polymers. Gets into 'complex fluid' categories. Interesting field.

#### 3) High visibility


Particles only scatter light. Interaction depends on size (d) compared to  $\lambda$ . Scattering =  $\sum$  of reflection, refraction, diffraction & absorption

 $d \sim O(\lambda)$ : Mie scattering regime.

e.g. visible light =0.7 - 0.4 $\mu$ m, so diameters of 1  $\mu$ m to 0.1 $\mu$ m (100 nm, 1000 A).

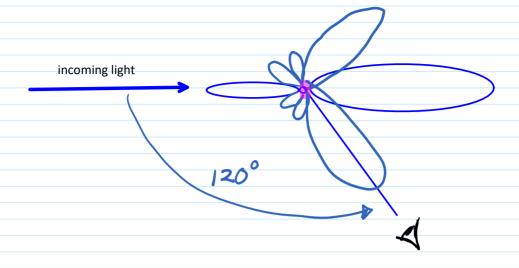

- Scattering efficiency drops as particles get smaller. Better tracking, but less light.
- Independent of wavelength; no colors from particles this small. Makes clouds white.
- o Particles large enough to have color are too big to track well.

I would enoth his



"NASA using tip vortex. Information for ID # EL-1996-00130," n.d., http://lisar.larc.nasa.gov/UTILS/info.cgi?id=EL-1996-00130.

## Light is not scattered uniformly:




Keck, Cornelia M., and Rainer H. Müller. "Size Analysis of Submicron Particles by Laser Diffractometry—90% of the Published Measurements Are False." International Journal of Pharmaceutics 355, no. 1–2 (May 1, 2008): 150–163.



Mie regime, small particles:

Back scatter < Forward scatter



Mie + Fraunhofer regime, larger particles: Back scatter < Forward scatter .

Often a strong lobe at 120 degrees to incoming light. SWEET SPOT Best to play with camera-light angles.

#### Smaller particles, $d \ll \lambda$ ,

Rayleigh scattering regime. Elastic collision of photons with particles. No energy exchange. Blue sky is Rayleigh scattering; sunlight scattered by molecules of air, preferentially blue. Longer wavelengths are too long to interact much; are only seen at sunset due to long passage through atmosphere, and when scattered by larger molecules of pollutants or dust.

## **Next: How to make or get particles**

http://www.youtube.com/watch?v=DOUfyDHxkYQ&feature=related

NCFMF film 'Flow Visualization'

Hydrogen bubble technique, but also discusses streamline vs streakline vs pathline