Motion Blur Example:
Field of view $=10 \mathrm{~cm}$
Fluid moving at $0.5 \mathrm{~m} / \mathrm{s}$
18 Mpx sensor
Minute paper: will $1 / 1000$ sec shutter speed 'freeze' this flow?

$$
\begin{aligned}
\text { Flow } & =.5 \mathrm{~m} / \mathrm{s} \\
. & .5 \mathrm{~m} / \mathrm{s} \times \frac{1}{1000} \mathrm{sec}=
\end{aligned}
$$



$$
\frac{.05 \mathrm{~cm}}{1.67 e^{-7} p^{x}}=30 \mathrm{px} \frac{30 p^{x}}{6000 p^{x}}=\frac{1}{200} \text { of image }
$$

$$
18 \mathrm{MPX} \Rightarrow 5184 \times 3456 \mathrm{P}^{x}
$$

In flow, particle will move

$$
0.5 \mathrm{~m} / \mathrm{s} \times \frac{1}{1000} \mathrm{sec}=.511000=0.0005 \mathrm{~m}=.05 \mathrm{~cm}
$$

$$
\text { How many pixels will }{ }^{\Omega} \text { cover? }
$$

$$
\frac{5000 \mathrm{px}}{10 \mathrm{~cm}}=\frac{? \mathrm{px}}{.05 \mathrm{~cm}}
$$



Do this analysis for each image; put in your report. Motion blur is surprisingly common and annoying.

## Resolution in the Measurand: Light

Part 1: Dynamic range
Human eye sensitivity, dark adapted ~ 800 ISO
http://clarkvision.com/imagedetail/eye-resolution.html
Human contrast range detection: 14 to 24 EV , but is dynamic.

Sheet of paper: at most 7 EV (factors of 2 in brightness) from black to white. Projector screen?


What can your camera detect?
Test: image a gray card. At low ISO, see how many stops of underexposure will make it black, and how many of overexposure will make it white. Probably a total range of 6-9. Best cameras can do 14.

## Part 2: Resolution=Bit Depth

This total dynamic range then gets quantized/digitized into steps. The more steps, the finer the resolution. (http://www.peachpit.com/articles/article.aspx?p=1709190\&seqNum=2. Nice discussion of dynamic range vs bit depth)

Part 2B: Counting steps
Bit $=$ off or on, 0 or 1 . Binary digit.


Binary= numbers in base 2, a series of bits. $0110=6$ in base 10
8421
$2^{3} 2^{2} 2^{1} 2^{0}$
With 4 bits, can count to $2^{4}=16$
With 8, can count to $256=$ one byte
Hexadecimal: single digit goes up to 16: 0-9, then A B C D E F $16^{\wedge} 2=256$, so can express full range of a byte in two digits.


Camera A/D is likely 10-24 bits. That's the number of different levels possible but not the range of brightnesses



HDR = High Dynamic Range
Take multiple images with varied (bracketed) exposures of the same scene, some under exposed, some over exposed. In-camera or post-processing algorithm assembles them together to provide additional measurand (light) resolution in highlight and shadow areas. Can make nighttime images look like daylight.

Here is an HDR image (made with 5 images from -3 to +3 EV) by Phil Nystrom 2018.


The word pixel is based on a contraction of pix ("pictures") and el (for "element");

Pasted from <http://en.wikipedia.org/wiki/Pixe
On a screen, = 1 red, 1 blue, \& 1 green light emitter. In Photoshop, access them separately in color channels ie. can control all blue pixels by themselves



RGB is a common color space, good for screens. CMYK (Cyan, Magenta, Yellow and black is another color space, good for printing


FFFFFF = full white in hexadecimal, one digit can count to 16; 0-9, then a-f 0000FF= blue
808080=gray

Color channels
Red channel: Can address just the red elements in all the pixels. See histograms, adjust range and contrast

1. Test the dynamic range of your camera: take images of a gray card. At low ISO, see how many stops of underexposure will make it black, and how many of overexposure will make it white. Probably a total range of 6-9. What happens at high ISO?
