SPECIFIC FV techniques

Boundary techniques. Boundary between 'seeded' and unseeded fluid.

Choice depends on physics desired

I DYES **Today**. Mostly in water.

Light/matter interactions in general

- 2 Index of refraction techniques
- 3 Light emitting fluids
- 4 Particles. In air (aerosols, fog, smoke)
- 5 Particles in water

2)Want dye to show up - HIGH VISIBILITY

High Visibility: Want good contrast between dyed and ambient fluid.

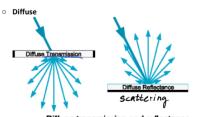
Ambient fluid = transparent = NO interaction with light Dyed fluid = want MAXIMUM interaction with light

Example: Alberto Seveso:

http://www.burdu976.com/phs/portfolio/2-colori-disatro-medicina/

Minute paper: list the ways that dye (or any molecule) can interact with light (from external source, later will talk about emitted light)

Refraction Absorption Diffraction Reflection Scattering/diffusion Transmission Dispersion Emission Fluorescence Excitation


1) Transmission

Refraction, at change of refractive index

Lecture 02 Overview2
Snell's law

http://upload.wikimedia.org/wikipe
dia/commons/thumb/1/13/F%C3%
A9nyt%C3%B6r%C3%A9s.ipg/220px
F%C3%A9nyt%C3%B6r%C3%A9s.ipg/220px
F%C3%A9nyt%C3%B6r%C3%A9s.ipg/220px

There are many flow vis techniques based on refraction; will cover later.

Diffuse transmission and reflectance. http://library.thinkquest.org/26162/manili.htm

REAR SURFACE

REFRACTION OF LIGHT

INCIDENT ANGLE

INCIDENT ANGLE

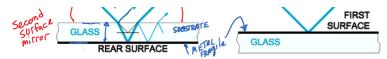
REFRACTED ANGLE

N

WAVEFRONT

https://www.telescope-optics.net/reflection.htm

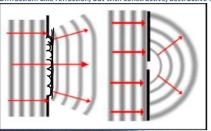
2) Reflectance


• Diffuse, scatter
• Specular

FIRST
SURFACE

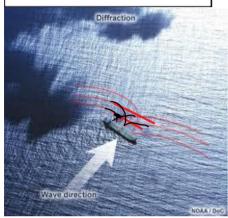
SURFACE

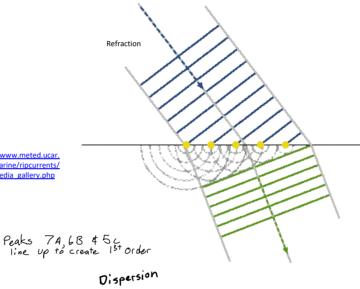
GLASS


httn://lihrary.thi

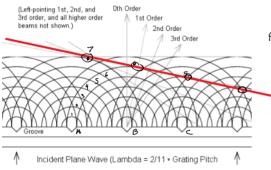
Reflection from a second surface and first surface mirror.

http://library.thi nkquest.org/261 62/manili.htm



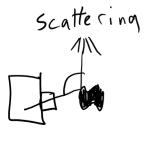

HUYGEN

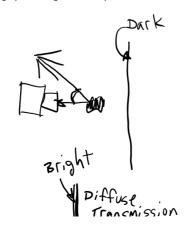
http://www.me ted.ucar.edu/m arine/ripcurren ts/NSF/media gallery.php

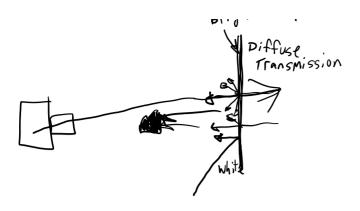

Fraunhofer diffraction, for incoming plane waves Fresnel diffraction, for incoming spherical waves (light source very close)

http://www.meted.ucar. edu/marine/ripcurrents/ NSF/media gallery.php

Arne Nordmann (norro) - Own illustration, based on Image:Wellen-Brechung.png and Image:Huygens_brechung.png

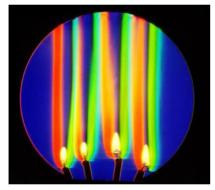

Diffraction Grating


http://exoplanet.as.arizona.edu/~lclose/a302/lecture14/lecture 14.html


1 storders

Minute Paper:

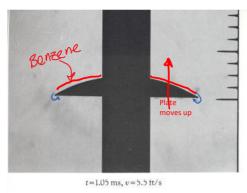
Sketch two setups showing how light interacts with dye: One a scattering setup (the dye scatters light), and one an absorbance setup. Show a typical light path from light source to dye to camera for each

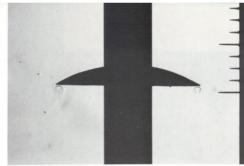

Index of refraction techniques

Requires no seed. Can visualize differences and gradients in temperature and chemical

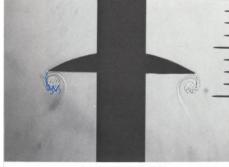
as both change the index of refraction of the media.

Examples first, then techniques discussed in detail: schlieren and shadowgraphy

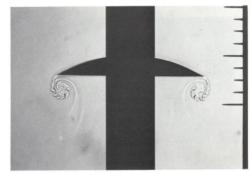

Color schlieren

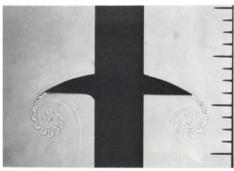


SHADOWGRAPH


Pasted from http://www.compadre.org/informal/images/features/schlierenlarge-11-29-06.jpg

Andrew DAVIDHAZY (retired now), RIT = Rochester Institute of Technology, offers engineering and BS through PhD in Imaging Science.




t = 2.14 ms, v = 11.1 ft/s

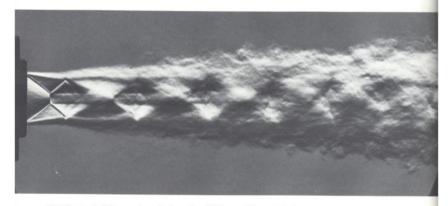
t = 3.22 ms, v = 16.9 ft/s

t = 4.30 ms, v = 21.0 ft/s

t = 6.53 ms, v = 24.0 ft/s

t = 10.66 m/s, v = 24.0 ft/s

81. Growth of vortices on an accelerated plate. Spark shadowgraphs show the history of a 3-inch-square plate in air, accelerated from rest to 24 ft/s. The sharp edge of the plate is initially opposite the first of a series of pins spaced ¼ inch apart. The motion is actually vertical, and the flow is visualized by painting a narrow band of benzene across the center of the balsa-wood plate, so that when the plate


accelerates benzene vapor is drawn into the vortex sheet. The difference in density between the vapor and the air makes the paths of their boundaries visible. Care was taken to ensure that the undulations observed in the vortex sheet were not caused by vibrations of the model. *Pierce 1961*

48

167. Subsonic jet becoming turbulent. A jet of air from a nozzle of 5-cm diameter flows into ambient air at a speed of 12 m/s. The laminar interface becomes unstable as in

figure 102, and the entire jet eventually becomes turbulent. Bradshaw, Ferriss & Johnson 1964

168. Supersonic jet becoming turbulent. At a Mach number of 1.8 a slightly over-expanded round jet of air adjusts to the ambient air through a succession of oblique

and normal shock waves. The diamond-shaped pattern persists after the jet is turbulent. Oertel 1975

98

Pasted from http://commons.wikimedia.org/wiki/File:Schlieren_photograph_of_T-38_shock_waves.jpg

Mach 1.1, full size T-38 in flight, 1993. L. Weinstein, NASA example of Background Oriented Schlieren (BOS). Correlate patterned background from image to get schlieren

 $\frac{http://fuckyeahfluiddynamics.tumblr.com/post/47622561173/this-high-speed-video-shows-schlieren-photography$

 CO_2 bottle rocket video. Shows Mach diamonds and expansion fans.

How it works:

http://www.npr.org/2014/04/09/300563606/what-does-sound-look-like

Michael Hargather, New Mexico Tech

 $\eta = \frac{C_{VA} c_{VVM}}{C_{MEDIVM}}$ eetah

n = index of refraction

Light is deflected towards more dense medium

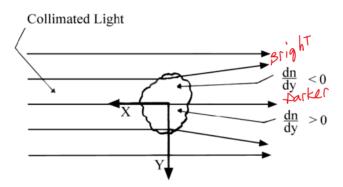
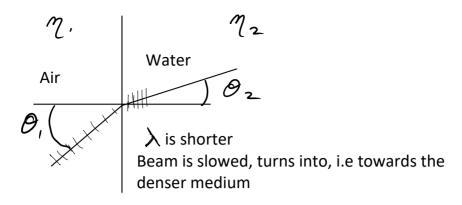


Figure 1. Disturbance in Collimated Beam


Copyright J. Kim Vandiver, 2002

Shadowgraphy:

constructive and destructive interference from disturbed parallel light

 $\frac{1}{2} \frac{3n}{2} = \frac{3^2}{2} \times 2$ curve of disturbed line = $\gamma(x)$

SNELL'S LAW

like a caustic sunlight

DARK BRIGHT Water

 $\underline{\text{http://www.shutterstock.com/video/clip-3174052-stock-footage-dappled-pool-water-ripple-background-swimming-pool-water-abstract-background-with-seamless-loop.html}$