
Today: More Clouds Skew T, stable vs unstable, relative humidity

Skew-T continued:

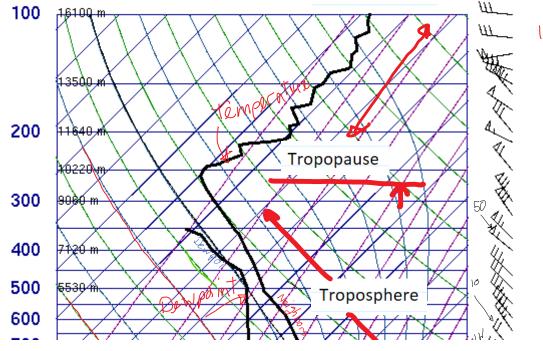
Tells stability, and thus cloud type: **STABLE=flat clouds, stratus types**. **UNSTABLE = puffy clouds, cumulus varieties** Also predicts cloud elevations; low, middle (alto), high (cirro)

Where are clouds? Where temperature is close to dew point, i.e. where the two heavy black lines come together.

Also, kink CW towards more steep in T line suggests clouds at that level. Condensation = warming (opposite of evaporation = cooling on your skin)

Can also get **local cloud height** from ATOC CU Boulder observation: <u>http://skywatch.colorado.edu/</u> or Flowvis.org>Links>Weather

Can get current and predicted cloud heights plus winds and other weather from Windy phone app and <u>http://Windy.com</u>. A bit tricky to navigate, though. Choose location, then Meteogram tab at bottom.

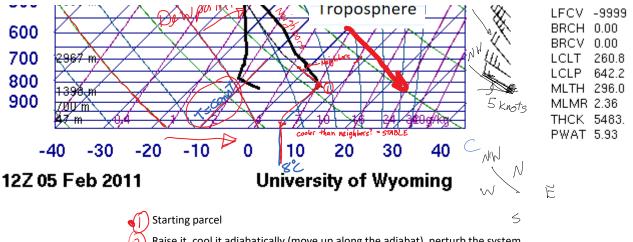

NO VERTICAL GRID?

	o many lines! How many kinds?	
	Horizontal blue	Constant pressure isobac
	Angled blue	Constant temperature; isotherm. Angle SKEW T
	Angle/curve green	Dry adiabat. A dry parcel will follow this temperature line if lifted adiabatically (without
	Angle/curve blue	heat transfer)
		Moist, saturated adiabatic lapse rate. Air in a cloud will follow this temperature line if
		lifted adiabatically
	Purple	Lines of constant mixing ratio; absolute humidity for saturation.
		Right line is temperature profile. Left line is dew point
		Adiabat starting at the top of the boundary layer

Basics of reading Skew T: <u>http://www.theweatherprediction.com/thermo/skewt/</u> Skew T Mastery: <u>https://www.meted.ucar.edu/loginForm.php?</u> <u>urlPath=mesoprim/skewt#</u>

72469 DNR Denver

Stratosphere

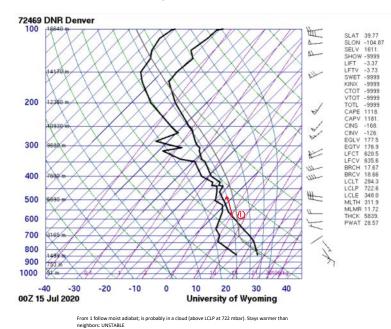


SLON -104.87 SELV 1625. SHOW -9999 LIFT 3.41 LFTV 3.41 SWET -9999 -9999 KINX -CTOT -9999 VTOT -9999 = STABLE TOTL -9999 TABLE if CAPE>O UNSTABLE CAPE 0.00 CAPV 0.00 🕅 CINS 0.00 CINV 0.00 EQLV -9999 EQTV -9999 LFCT -9999 LFCV -9999 BRCH 0.00

SLAT 39.75

BRCV 0.00

2020 Fall laptop Page 1


Raise it, cool it adiabatically (move up along the adiabat), perturb the system
 Check it, is my parcel warmer or cooler than the actual neighboring parcels?
 i. Cooler; more dense, wants to sink again, go back to origin STABLE
 ii. Warmer; less dense, wants to keep going up! UNSTABLE

Can start at any point on the actual temperature line. Go parallel to the adiabats. Choose dry adiabat (green) if below likely cloud level or wet (blue, saturated) if in a cloud.

Stable clouds = flat STRATUS type Unstable clouds = puffy CUMULUS family

Atmosphere is all **stable if CAPE = 0** Convective Available Potential Energy Has unstable layers if CAPE > 0. Thunderstorms if CAPE > 500 or so.

Unstable Skew-T example

What was the surface weather on a given day? https://www.wunderground.com/history

Dew point: Temperature a parcel would have to be cooled to in order to get condensation (dew)

Relative humidity: How much water the air currently holds compared to how much it could hold at this temperature. For a given absolute water vapor concentration, RH is high for low temperatures (close to dew point) and low for high temperatures. So T and RH time plots move opposite.

Other info on Skew-T: wind indicators, lifting condensation level. Cumulus have flat bottoms at this altitude.

OK, now look at skew-T for your date:

http://weather.uwyo.edu/upperair/sounding.html

 Skew-T download tips:
 Skew-T Times:
 Utr / GMT is the basis for local times worthide ,

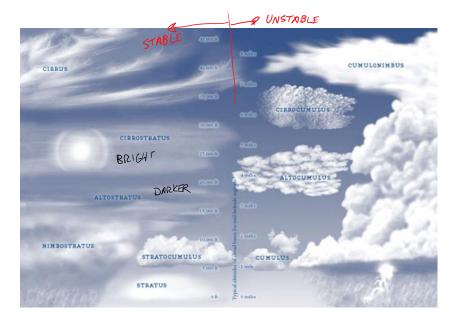
 Other names:
 Universal Time Coordinated / Universal Coordinated / Universal Coordinated / Universal Coordinated / Universal Time (GMT)

 * 12Z, Feb 14 = ~6 am Feb 14 here. Sunrise.

 00Z, Feb 15 = ~6 pm Feb 14 here. Sunset.

1. Choose correct date. 12z Feb X is the 6 am sounding, 00z X+1 is the 6 pm sounding for date X

2. Choose plot, not text


3. Will open in next browser tab

Clouds = droplets or ice MOVING UPWARDS

Lift mechanisms:

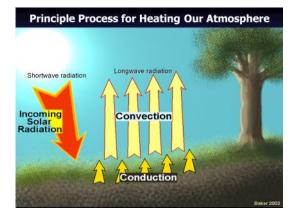
1. Instability

- 2. Orographics: terrain, mountains
- 3. Synoptic scale weather systems. Both at warm and cold fronts; cold air pushes under in a cold front, warm air overruns in a warm front.
- 4. Convergence: shoreline temperature differences

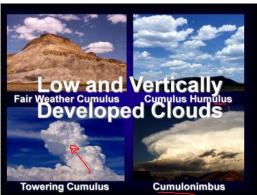
Clouds classified by

A. Structure: stratus = flat layers, cumulus = clumps

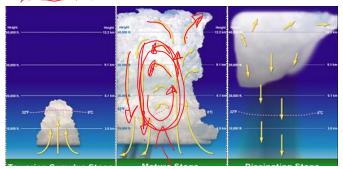
- B. Base height: (2km)
 - a. low: up to 6500 ft (above ground, not from sea level) and vertically developed (includes cumulonimbus)
 - b. middle: 6500 to 23,000 ft (2 7 km)
 - c. high: 16,000 to 45,000 OVERLAP (4.9 14 hm)Cirrostratus: bright, no observable thickness, thin, uniform veil Altostratus: darker, may have noticeable thicker regions


- Cloud image submission: Include
- .Cahvas 1) your edited image
- 2) your original (unedited) image -
 - 3) the appropriate Skew-T diagram In Te por 4) a short statement of cloud type and stable or unstable atm. in Ceport
 - 5) Post on Flowvis.org. Edit your post date to match your cloud date and time.

Clouds = droplets or ice MOVING UPWARDS


Lift mechanisms:

- 1. Instability: creates Cumulus clouds
- 2. Orographics: terrain, mountains
- 3. Synoptic scale weather systems; local instability. Both at warm and cold fronts; cold air pushes under in a cold front, warm air overruns in a warm front.
- 4. Convergence: shoreline temperature differences and cyclonic uplift


1. Instability driven clouds

If atmosphere is UNSTABLE, the heated air will continue to go up!

Castellanus

2020 Fall laptop Page 4

Dark ground (plowed field etc.) can create local hot spot, starting a thermal. Mountain uplift can also trigger start of cycle. http://www.k3jae.com/wxstormdevelopment.p

<u>hp</u>

Thunderstorm anatomy, visible in Mike Olbinski's time lapse *Monsoon IV*: <u>https://vimeo.com/239593389?ref=fb-share&1</u> or his *Pursuit*: <u>https://vimeo.com/226958858</u>

ACSL

_Pyrocumulus = cloud formed at the top of a wildland fire smoke plume.

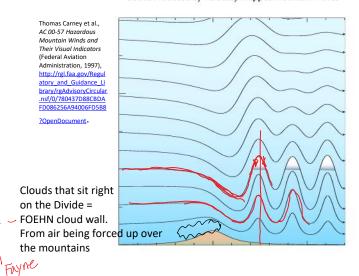
2: Orographic clouds, caused by topography, i.e. mountains Orography (from the Greek όρος, hill, γραφία, to write) [Wikipedia]

Most common interesting cloud in winter and spring is the

Standing Al<u>tocumulus le</u>nticularis (higher than 6500 ft above local ground level)

or

Stratocumulus lenticularis (lower)


Λ

or

Mountain Wave Cloud, trapped or lee

requires STABLE atmosphere: note exception to unstable/cumulus pairing

STANDING WINE Clouds Produced by Vertically Trapped Mountain Waves

Altocumulus lenticularis. Typically 1 to 5 wave crests.

Clouds stay stationary, but may move off and reform periodically

Ben Britton, FV 2010