IV 4: Oobleck and Standing Waves

Isaac Martinez in Collaboration with Martin Allsbrook IV 4 - Team First MCEN 5228: Flow Visualization November 14, 2022

Image Purpose and Context

This photo was inspired by some of our classmates using oobleck on the shake table in the ITLL and what my team knew about standing waves that are created in sand that is shaken at certain frequencies. We hoped to see how an object would interact with the surface of oobleck (a non-Newtonian fluid) when its surface is subject to standing waves. The end result was a distinct phenomenon not commonly seen in everyday life.

Image Circumstances

This photo was taken in one of the ITLL study rooms on November 1 at 8pm. We mixed 2 cups of Sprouts Cornstarch, 1 cup of water, and a few drops of green McCormick Food Color and Egg Dye to create our oobleck. After mixing, we poured a few ounces of the mix directly onto the subwoofer on one side of Martin's JBL Charge 4 bluetooth speaker. In order to apply a steady frequency to the speaker and fluid, I downloaded an app called "Frequency Generator" from the Google Play Store. We experimented with what frequency we wanted to use but ultimately settled on 65 Hz since it gave us the amplitudes of waves we wanted in the fluid. After we settled on the fluid behavior, we dropped a small nut from the ITLL consumables closet onto its surface. The experimental setup can be seen below in Figure 1.

Figure 1: Experimental photography setup of oobleck on speaker.

In 1831, Michael Faraday observed standing capillary waves at the free surface of fluids on plates subjected to period vertical oscillation. He remarked the characteristic frequency of the emerging patterns of the fluid's surface was half of the driving frequency of the imposed vibration [I]. The basic equation governing the behavior of a layer of fluid in a vertically vibrating system is that of the parametric oscillator^[II]. The parametric oscillator equation for infinitely small fraction of a the fluid surface is provided below:

$$z'' + 2\mu z' + \omega_0^2 [1 + \alpha(t)]z = 0$$

Where z is the vertical position of the infinitesimal fraction of the surface of the surface, μ is the damping rate associated with the viscosity of the fluid, ω_0 is the frequency of oscillation

of the fraction of the surface, and $\alpha(t)$ is the dimensionless oscillating parameter function. This is similar to the damped harmonic oscillator^[III]:

$$g(t) = g + A\omega^2 cos(\omega t)$$

Where g is gravity, A is the amplitude of the vibrations of the shaker, and $\omega = 2\pi f$ with f being the frequency of the driving force. Because of this, Faraday waves are sometimes referred to as "standing gravity waves". Different wave amplitudes and numbers occur are directly influenced by the frequency and intensity of waves applied to them. At higher frequencies, the unstable wave "tongues" tend to clump together and increase in number with the amplitudes being translated directly from wave intensity. For the sake of visual clarity, I have also added a link to a video from the "Interesting Clips" YouTube channel to show how the shapes of Faraday waves change based on increasing the frequency of the waves vibrating the surface of the fluid, below^[IV]: **C** Faraday waves and water .

Not much is known about exactly how the Faraday instability applies to non-Newtonian fluids, but it has been seen that the instability threshold is higher than the Newtonian case. This suggests that as the driving frequency increases, the viscosity of the solution conversely decreases. We did see this as we increased the frequency. Initially, the fluid did not want to pulsate at all, but once we approached 50 Hz, we were able to see more dramatic changes in the waveforms on the fluid's surface at smaller increased intervals of frequency. In other words, it was more "open to change" at higher frequencies.

Visualization Technique

This photo was taken with the back camera of my Pixel 6, since it performed better than my Canon Power SX10IS 10MP camera at capturing macro photos of the Faraday waves. The photo was taken in the evening with no lights on in the study room. The only light source came from the same level as the fluid to create shadows on the surface to better accentuate the waves with Martin's iPhone 14 4W flashlight. The raw, unedited photo can be seen in Figure 2.

Figure 2: Unedited photo of Faraday waves on oobleck

Photographic Technique

This photo was taken with the 9.1 MP back camera of my Pixel 6. The initial image had a resolution of 2268x 4032 pixels from 4 inches away (slightly higher than the horizon of the with a 3 inch field of view). The camera was zoomed in with the following settings applied:

- Aperture: f/1.9
- Exposure: 1/639
- Focal Length: 6.81 mm
- Focus Distance: 0.1 m
- ISO: 402

In DarkTable, I performed heavy edits to the image in order to remove the distracting background and speaker elements in order to bring the focus to the Faraday waves and the nut on its surface. I started by cropping the image to 2220 x 2075 pixels. I put a mask around the fluid, along the circular edge of the speaker surrounding the fluid and decreased the brightness of the background until it became black. To soften the boundary between the fluid and black edge of the mask, I added a vignette with a softening radius, so the boundary was not distracting. Once the fluid was isolated I adjusted the RGB curve to increase the color vibrancy and to cover the full dynamic range. The green-magenta balance was also increased and a low strength velvia to better contrast the color differences between the nut and fluid that were initially washed out by the phone light.

Image Reveals

I could not be happier with the outcome of this post processed image. I caught this image at the perfect time where the Faraday wave was disrupted by the nut. The unaffected areas of the

wave are visible at the edges of the speaker. It is also very clear how troughs form around the edges of the nut, while the waves have constructive interference in the center of the nut. While there are some small distracting elements left on the fluid's surface (likely metal flake from the nut, pieces of dust, or dirty cornstarch from us touching the nut), I believe the color correction and cropping of the image serve to provide a very clear representation of how Faraday waves form on a non-Newtonian fluid when subject to a constant vibration.

References:

- Giulia, B., Giulia Bevilacqua Giulia Bevilacqua MOX, Bevilacqua, G., MOX, G. B., Shao, X., Xingchen Shao Department of Mechanical Engineering, Saylor, J. R., John R. Saylor Department of Mechanical Engineering, Bostwick, J. B., Joshua B. Bostwick Department of Mechanical Engineering, Ciarletta, P., & Pasquale Ciarletta http://orcid.org/0000-0002-1011-5587 MOX. (2020, September 30). Faraday waves in soft elastic solids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. Retrieved November 14, 2022, from https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0129
- II. Westra, M., Binks, D., & Van De Water, W. (2003). Patterns of Faraday waves. Journal of Fluid Mechanics, 496, 1-32. doi:10.1017/S0022112003005895
- *III.* Yu Gu, R., Rvachov, T., & Sathananthan, S. (2014). FAR Faraday Waves. University of Toronto. Retrieved November 14, 2022, from https://www.physics.utoronto.ca/~phy326/far/far.pdf
- *IV.* YouTube. (2020, June 24). Faraday Waves and Water. YouTube. Retrieved November 14, 2022, from https://www.youtube.com/watch?v=-3jsevcyP9g

Image Assessment Form Flow Visualization Spring 2013

Name(s) Isaac Martinez

Assignment: IV4

Date: 11/14

Scale: +, ! = excellent $\sqrt{}$ = meets expectations; good. ~ = Ok, could be better. X = needs work. NA = not applicable

Art	Your assessment	Comments
Intent was realized		
Effective	\checkmark	
Impact	1	Shows unique interaction with standing wave
Interesting		-
Beautiful	\checkmark	
Dramatic	\checkmark	
Feel/texture	\checkmark	
No distracting elements	~	Some small particles from nut on fluid
Framing/cropping enhances image	1	Focuses the flow immensely

Flow	Your assessment	Comments
Clearly illustrates phenomena	\sim	
Flow is understandable	\checkmark	
Physics revealed	\checkmark	Clear standing waves
Details visible	\checkmark	
Flow is reproducible	\sim	
Flow is controlled	\checkmark	Speaker held at 65 Hz
Creative flow or technique	\checkmark	Uses Non-Newtonian fluid & vibration
Publishable quality	\checkmark	

Photographic/video technique	Your assessment	Comments
Exposure: highlights detailed	\checkmark	
Exposure: shadows detailed		
Full contrast range	\checkmark	
Focus	\checkmark	Nice focus throughout surface/nut
Depth of field	\checkmark	
Time resolved	\checkmark	
Spatially resolved	\checkmark	After cropping, yas
Photoshop/ post-processing enhances		Performs color correction, substantial
intent	:	cropping and good by namic sector
Photoshop/ post-processing does not	1	
decrease important information	\bigvee	

Report		Your	Comments
		assessment	
Collaborators acknowledged		\checkmark	
Describes intent	Artistic		Standing waves & Non-Newtonian fluid
	Scientific	\checkmark	
Describes fluid phenome	ena	\checkmark	
Estimates appropriate scales	Reynolds number etc.	\sim	Stable flow, but straggled to Quantify
Calculation of time	How far did flow move		
resolution etc.	during exposure?		
References:	Web level		
	Refereed journal level	\checkmark	Use of new research
Clearly written			
Information is organized		\checkmark	
Good spelling and grammar			
Professional language (p	oublishable)	\checkmark	
Provides information	Fluid data, flow rates	~	Hard to quantify due to fluid "maintenance"
needed for reproducing	geometry	\checkmark	
flow	timing	\checkmark	
Provides information	Method	\checkmark	
needed for reproducing	dilution	~	Good rough estimates, but mixing
vis technique	injection speed	~	
	settings		
lighting type	(strobe/tungsten, watts, number)	\checkmark	
	light position, distance	\checkmark	
Provides information for	Camera type and model	\checkmark	
reproducing image	Camera-subject		
	Field of view		
	Focal length	V	
	aperture	V	
	shutter speed	V	
	Frame rate, playback		
	rate		
	ISO setting		
	# nivels (width Y ht)		
	Photoshon and post-		
	nrocessing techniques	\checkmark	
	"hefore" Photoshon	/	
	image	\checkmark	