A mixture of naphtha and isopropanol sprayed from an automotive fuel injector.
Hunter Hach
Categories
- 2021 Fall (219)
- Admin (5)
- Flow Categories (1,007)
- Clouds (387)
- Altocumulus (60)
- Altocumulus Lenticularis (72)
- Altostratus (49)
- Atmospheric Optical Phenomena (7)
- Anticrepuscular Rays (1)
- Crepuscular Rays (4)
- Banner Cloud (1)
- Cirrocumulus (11)
- Cirrostratus (13)
- Cirrus (34)
- Contrail (9)
- Cumulonimbus (9)
- Cumulus (51)
- Cumulus Congestus (6)
- Foehn Cloud Wall (7)
- Fog (6)
- Kelvin-Helmholtz Waves (7)
- Mountain Wave (85)
- Nighttime (3)
- Nimbostratus (4)
- Radiatus (2)
- Stratocumulus (96)
- Stratus (14)
- Sunrise (24)
- Sunset (83)
- Undulatus (15)
- Combustion/Explosions (67)
- Fire: Partially Premixed/Turbulent Flames (35)
- Ignition (6)
- Premixed flame (4)
- Rubin's Tube (6)
- Sparks (9)
- Convective Cell (4)
- Ferrofluid (34)
- Fluid-Structure Interaction (15)
- Mixing (55)
- Nondiffusive (25)
- Turbulence (13)
- Multiphase (317)
- Foams and Soap Bubbles (46)
- Hydraulic Jump (5)
- Ice (12)
- Leidenfrost (13)
- Lensing (12)
- Liquids in Air (51)
- Rising Bubbles (30)
- Smoke and Fog (53)
- Soap Films (23)
- Splashes (74)
- Worthington Jet (27)
- Sprays (17)
- Surface Tension (69)
- Water Surface (30)
- NonNewtonian (47)
- Kaye Effect and Rope Coiling (14)
- Oobleck (22)
- Paint (5)
- Plumes and Drops (91)
- Buoyant (10)
- Negatively Buoyant (39)
- Rayleigh-Taylor Instability (52)
- Saffman-Taylor Instability (27)
- Vortexes (75)
- Bathtub Drain (4)
- Spiral Vortex View (19)
- Vortex Ring (38)
- Vortex Side View (21)
- Wakes, Jets, Shear (63)
- Waves (21)
- Clouds (387)
- Flow Vis Techniques (427)
- Chemiluminescence (29)
- Fluorescence (14)
- Marked Area (201)
- Laser Sheet (8)
- Particle Tracks (11)
- Refractive Index (118)
- Rheoscopic Fluid (10)
- Slow Motion (28)
- Thermal Emission (45)
- Thin Film Interference (21)
- Time Lapse (9)
- Wall Shear (8)
- flow visualization (1)
- Media (757)
- No category (92)
- z Class & Assignment (2,185)
- 2013 (278)
- 2013 Spring Clouds First (47)
- 2013 Spring Clouds Second (46)
- 2013 Spring Get Wet (48)
- 2013 Spring Team First (46)
- 2013 Spring Team Second (45)
- 2013 Spring Team Third (46)
- 2014 (254)
- 2014 Clouds First (43)
- 2014 Clouds Second (42)
- 2014 Get Wet (43)
- 2014 Team First (43)
- 2014 Team Second (41)
- 2014 Team Third (42)
- 2015 (247)
- 2015 Clouds First (42)
- 2015 Clouds Second (41)
- 2015 Get Wet (41)
- 2015 Team First (41)
- 2015 Team Second (41)
- 2015 Team Third (41)
- 2016 (275)
- 2016 Best of Web (47)
- 2016 Clouds First (38)
- 2016 Clouds Second (38)
- 2016 Get Wet (38)
- 2016 Team First (38)
- 2016 Team Second (38)
- 2016 Team Third (38)
- 2018 Fall (235)
- 2018 Fall Best of Web (36)
- 2018 Fall Clouds First (33)
- 2018 Fall Clouds Second (33)
- 2018 Fall Get Wet (34)
- 2018 Fall Team First (34)
- 2018 Fall Team Second (32)
- 2018 Fall Team Third (33)
- 2018 Spring (423)
- 2019 Fall (304)
- 2019 Extra Images (3)
- 2019 Fall Best of Web (44)
- 2019 Fall Clouds First (43)
- 2019 Fall Clouds Second (43)
- 2019 Fall Get Wet (43)
- 2019 Fall Team First (43)
- 2019 Fall Team Second (43)
- 2019 Fall Team Third (42)
- 2020 Fall (172)
- 2020 Fall Best of Web (29)
- 2020 Fall Clouds First (29)
- 2020 Fall Clouds Second (20)
- 2020 Fall Image-Video 1 (29)
- 2020 Fall Image-Video 2 (29)
- 2020 Fall Image-Video 3 (28)
- 2020 Fall Image-Video 4 (9)
- 2013 (278)
Flow Vis Guidebook
Flow Vis Guidebook
- Introduction to the Guidebook
- Overview 1: Phenomena. Why Does It Look Like That?
- Overview 2: Visualization Techniques
- Overview 3: Lighting
- Overview 4 - Photography A: Composition and Studio Workflow
- Overview 4 - Photography B: Cameras
- Overview 4 - Photography C: Lenses - Focal Length
- Overview 4 - Photography C: Lenses - Aperture and DOF
- Overview 4: Photography D: Exposure
- Overview 4 - Photography E - Resolution
- Overview 5 - Post-Processing
- Boundary Techniques - Introduction
- Dye Techniques 1 - Do Not Disturb
- Dye Techniques 2 - High Visibility
- Dye Techniques 3 - Light Emitting Fluids
- Photons, Wavelength and Color
- Refractive Index Techniques
- Art and Science
- TOC and Zotpress test
19 Comments. Leave new
I really like this image and how the flow splits off into two streams, and how you can see all the individual droplets
I like the inclusion of the nozzle in this picture to show how these two streams are generated. It is also really interesting to some droplets moving between the two jets.
I really enjoy the split stream. I think it looks really cool.
I think the split in the stream is very interesting and adds a cool dynamic.
This is a very cool picture showing a piece of engineering that most people never see working. Also, I applaud you for working with a flammable fluid like this.
Nice time and effort on for the it reminds me of hyperdrive in star wars
I appreciate the positioning of the lighting in this image, it directs your eye to the direction of flow.
I’m a fan of the motion blur, it’s both a nice aesthetic and a good visualization of the actual flow.
I like the shutter speed you used to show velocity differences between the particles. I also think the framing of the image, which shows how distinct the pattern from the injector is, creates a lot of visual intrigue.
I love how you set up the lighting. I think it gives the image a cool dynamic.
I like the way we can see specific fluid particles and can make observations of the flow based on that. It’s a really interesting image to look at.
I am intrigued by how you can see the direction of the spray particles based off of their trails ( lower right-hand corner). Great use of the shutter speed to capture this!
I like the particles that are not moving in the direction of the flow. They are captured beautifully.
I really like how you captured the streamlines
Awesome image Hunter. Really enjoy the framing and geometry of this shot.
I love the concept of your image! I think that you put a lot of work into the set up of the image, and that is reflected in the result!
I like the contrast between the atomized particles and the straight streams of fluid.
I like the transition from a rapid laminar flow, to chaotic particles. The lighting really makes the particles pop.
I really like the two streams the fuel injector produced. Great work capturing the motion