Branden Goldenberg – Team 3rd
Categories
- 2021 Fall (219)
- Admin (5)
- Flow Categories (1,007)
- Clouds (387)
- Altocumulus (60)
- Altocumulus Lenticularis (72)
- Altostratus (49)
- Atmospheric Optical Phenomena (7)
- Anticrepuscular Rays (1)
- Crepuscular Rays (4)
- Banner Cloud (1)
- Cirrocumulus (11)
- Cirrostratus (13)
- Cirrus (34)
- Contrail (9)
- Cumulonimbus (9)
- Cumulus (51)
- Cumulus Congestus (6)
- Foehn Cloud Wall (7)
- Fog (6)
- Kelvin-Helmholtz Waves (7)
- Mountain Wave (85)
- Nighttime (3)
- Nimbostratus (4)
- Radiatus (2)
- Stratocumulus (96)
- Stratus (14)
- Sunrise (24)
- Sunset (83)
- Undulatus (15)
- Combustion/Explosions (67)
- Fire: Partially Premixed/Turbulent Flames (35)
- Ignition (6)
- Premixed flame (4)
- Rubin's Tube (6)
- Sparks (9)
- Convective Cell (4)
- Ferrofluid (34)
- Fluid-Structure Interaction (15)
- Mixing (55)
- Nondiffusive (25)
- Turbulence (13)
- Multiphase (317)
- Foams and Soap Bubbles (46)
- Hydraulic Jump (5)
- Ice (12)
- Leidenfrost (13)
- Lensing (12)
- Liquids in Air (51)
- Rising Bubbles (30)
- Smoke and Fog (53)
- Soap Films (23)
- Splashes (74)
- Worthington Jet (27)
- Sprays (17)
- Surface Tension (69)
- Water Surface (30)
- NonNewtonian (47)
- Kaye Effect and Rope Coiling (14)
- Oobleck (22)
- Paint (5)
- Plumes and Drops (91)
- Buoyant (10)
- Negatively Buoyant (39)
- Rayleigh-Taylor Instability (52)
- Saffman-Taylor Instability (27)
- Vortexes (75)
- Bathtub Drain (4)
- Spiral Vortex View (19)
- Vortex Ring (38)
- Vortex Side View (21)
- Wakes, Jets, Shear (63)
- Waves (21)
- Clouds (387)
- Flow Vis Techniques (427)
- Chemiluminescence (29)
- Fluorescence (14)
- Marked Area (201)
- Laser Sheet (8)
- Particle Tracks (11)
- Refractive Index (118)
- Rheoscopic Fluid (10)
- Slow Motion (28)
- Thermal Emission (45)
- Thin Film Interference (21)
- Time Lapse (9)
- Wall Shear (8)
- flow visualization (1)
- Media (757)
- No category (92)
- z Class & Assignment (2,185)
- 2013 (278)
- 2013 Spring Clouds First (47)
- 2013 Spring Clouds Second (46)
- 2013 Spring Get Wet (48)
- 2013 Spring Team First (46)
- 2013 Spring Team Second (45)
- 2013 Spring Team Third (46)
- 2014 (254)
- 2014 Clouds First (43)
- 2014 Clouds Second (42)
- 2014 Get Wet (43)
- 2014 Team First (43)
- 2014 Team Second (41)
- 2014 Team Third (42)
- 2015 (247)
- 2015 Clouds First (42)
- 2015 Clouds Second (41)
- 2015 Get Wet (41)
- 2015 Team First (41)
- 2015 Team Second (41)
- 2015 Team Third (41)
- 2016 (275)
- 2016 Best of Web (47)
- 2016 Clouds First (38)
- 2016 Clouds Second (38)
- 2016 Get Wet (38)
- 2016 Team First (38)
- 2016 Team Second (38)
- 2016 Team Third (38)
- 2018 Fall (235)
- 2018 Fall Best of Web (36)
- 2018 Fall Clouds First (33)
- 2018 Fall Clouds Second (33)
- 2018 Fall Get Wet (34)
- 2018 Fall Team First (34)
- 2018 Fall Team Second (32)
- 2018 Fall Team Third (33)
- 2018 Spring (423)
- 2019 Fall (304)
- 2019 Extra Images (3)
- 2019 Fall Best of Web (44)
- 2019 Fall Clouds First (43)
- 2019 Fall Clouds Second (43)
- 2019 Fall Get Wet (43)
- 2019 Fall Team First (43)
- 2019 Fall Team Second (43)
- 2019 Fall Team Third (42)
- 2020 Fall (172)
- 2020 Fall Best of Web (29)
- 2020 Fall Clouds First (29)
- 2020 Fall Clouds Second (20)
- 2020 Fall Image-Video 1 (29)
- 2020 Fall Image-Video 2 (29)
- 2020 Fall Image-Video 3 (28)
- 2020 Fall Image-Video 4 (9)
- 2013 (278)
Flow Vis Guidebook
Flow Vis Guidebook
- Introduction to the Guidebook
- Overview 1: Phenomena. Why Does It Look Like That?
- Overview 2: Visualization Techniques
- Overview 3: Lighting
- Overview 4 - Photography A: Composition and Studio Workflow
- Overview 4 - Photography B: Cameras
- Overview 4 - Photography C: Lenses - Focal Length
- Overview 4 - Photography C: Lenses - Aperture and DOF
- Overview 4: Photography D: Exposure
- Overview 4 - Photography E - Resolution
- Overview 5 - Post-Processing
- Boundary Techniques - Introduction
- Dye Techniques 1 - Do Not Disturb
- Dye Techniques 2 - High Visibility
- Dye Techniques 3 - Light Emitting Fluids
- Photons, Wavelength and Color
- Refractive Index Techniques
- Art and Science
- TOC and Zotpress test
8 Comments. Leave new
The natural ripples in this flow and how they effect the underlying darker sand is very interesting. It almost seems like one type of sand is heavier than the other and there is a sifting process going on.
This is beautiful, the contrast of the glassy water surface with the light and dark sand is awesome. Love that you can see the dark sand trails.
Interesting image to capture, the bumps in the water add a nice texture to the image. Consider cropping down ever so slightly as the top rocks distract from the flow a little.
1. Nice interesting artistic image.
2. The physics are well shown.
3. The photographic technique is good.
The image shows a few different dynamics between the sand and the water. I am curious if the bumpy effects are due to the topography in the sand and steady flow or the transition to turbulent flow as the depth increases in the middle of the flow.
This image is very interesting and unique since it captures this cool natural flow phenomena. I really like the reflection coming off the peaks of the water.
I like the contrast of the sand in this image with the dark and light colors. It is cool to see how the waves are distributed in the flow and the separation of the sand. Interesting photo!
Cool image it almost looks like mountains. Focus is good and colors are nice.